UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Mono- and binuclear cobalt hydrides Ng, Jesse B.


The homogeneous hydrogenation of arenes with functional groups was studied with allylcobalt complexes containing the bulky chelating diphosphines dippp (1,3-bis(diisopropylphosphino)propane and dippcyp (trans-(±)-l,2-bis(diisopropylphos-phino)cyclopentane). The results indicated that these catalyst precursors were unsuitable for the hydrogenation reactions, being too sensitive to the nature of the substrate. From these hydrogenation reactions, the intermediates (η⁵-cyclohexadienyl)Co(dippcyp) (10) and (η⁴-2-methoxynaphthalene)Co(H)(dippcyp) (11) were isolated and structurally characterized, thus providing some insight into the mechanism of the hydrogenation reaction. The production of binuclear hydrides such as [(dippp)CoH₂]₂ (4) and [(dippcyp)CoH₂]₂ (9) was observed to lead to the end of the catalysis. An X-ray structural characterization of the blue hydride [(dippp)CoH₂]₂ (4) showed that in the solid state it is binuclear. Although the complex is diamagnetic in the solid state (6-280 K), in solution its paramagnetic behaviour could only be attributed to an equilibrium with a second species proposed to be mononuclear, (dippp)CoH₂. In addition, a cyclic voltammogram of the complex in solution indicated that the predominant species still was the binuclear compound [(dippp)CoH₂]₂ (4). One of the syntheses of [(dippp)CoH₂]₂ (4) gave a product identified as (dippp)CoH₃ (5). Based on variable-temperature spin-lattice relaxation time (T₁) measurements and an electrochemical study, this red hydride complex appeared to contain an η²-H₂ ligand. The relationship of this complex with the blue hydride apparently involves the mononuclear species, (dippp)CoH₂. Independent pathways led to the formation of both the blue and red hydrides, and these pathways are discussed in terms of possible mechanisms.

Item Media

Item Citations and Data


For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.