- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- A method for simulating and representing strong ground...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
A method for simulating and representing strong ground motion Jurkevics, Andrejs
Abstract
A method for representing and synthesizing strong motion accelerograms is proposed in this thesis. The procedure models an acceleration time-history as a non-stationary second order autoregressive (AR) process. Three AR parameters are determined from the data in a time-adaptive manner. They provide a quantitative description of the time-varying spectral content of the recording. The AB parameters may also be utilized as prediction filter coefficients, enabling one to generate a suite of artificial accelerograms, each having the same time-dependent spectral content as the target record. The simulated time-histories may be used for computing structural response in earthquake-prone areas.
This analysis has been extended to include a number of recordings obtained during earthquakes of various magnitudes (M) at a variety of epicentral distances (D). As a result, 'type curves' representing the empirical behaviour of the three AB parameters have been determined. Although incomplete, this information may be used to generate artificial accelerograms for arbitrary combinations of M and D.
Item Metadata
| Title |
A method for simulating and representing strong ground motion
|
| Creator | |
| Publisher |
University of British Columbia
|
| Date Issued |
1978
|
| Description |
A method for representing and synthesizing strong motion accelerograms is proposed in this thesis. The procedure models an acceleration time-history as a non-stationary second order autoregressive (AR) process. Three AR parameters are determined from the data in a time-adaptive manner. They provide a quantitative description of the time-varying spectral content of the recording. The AB parameters may also be utilized as prediction filter coefficients, enabling one to generate a suite of artificial accelerograms, each having the same time-dependent spectral content as the target record. The simulated time-histories may be used for computing structural response in earthquake-prone areas.
This analysis has been extended to include a number of recordings obtained during earthquakes of various magnitudes (M) at a variety of epicentral distances (D). As a result, 'type curves' representing the empirical behaviour of the three AB parameters have been determined. Although incomplete, this information may be used to generate artificial accelerograms for arbitrary combinations of M and D.
|
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2010-02-26
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
| DOI |
10.14288/1.0052996
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Campus | |
| Scholarly Level |
Graduate
|
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.