- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Copper, lead and zinc sorption on Wyoming montmorillonite
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Copper, lead and zinc sorption on Wyoming montmorillonite Cooper, Roger Brian
Abstract
Exchange adsorption of Cu²⁺ , Pb²⁺ and Zn²⁺ for Na on Wyoming mont-morillonite, in chloride and nitrate electrolyte solutions less than 10⁻³ M total heavy metal concentration, can be modelled with a simple equilibrium ion-exchange reaction: Me²⁺ + 2 Na{Mont} = Me{Mont}₂ + 2 Na⁺ where Me. and Mont represent a given heavy metal and montmorillonite. Equilibrium constants for this reaction are equal for Cu²⁺ and Zn²⁺ at 3.0 ± 1, slightly less than that for Pb²⁺ at 5.0 ± 1, and comparable to constants calculated for monopositive exchange of K⁺ for Na⁺ (3.0 ± 1) and H⁺ for Na⁺ (2.5 ± .5). Above 10⁻³ M total metal concentration, heavy metal exchange for Na is complicated by variable total Na exchange capacity and by apparent anionic interferences. CuCl₂ and ZnCl₂ electrolyte solutions are more effective Na exchangers at 0.1 M than Cu(NO₃)₂, Pb(NO₃)₂, KC1 or HC1 solutions at the same concentration. Retardation factors of Cu, Pb and Zn spots eluted across thin layers of Na-montmorillonite (supported by silica gel) by aqueous NaCl and NaNO₃ solutions of 0.05 to 3.0 M concentration suggest, when interpreted with a rudimentary ion-exchange mass transfer model, that metals migrate mainly as monopositive species—perhaps as monohydroxo-complexes within the clay micelle. Precipitation of Pb chloride or hydroxy-chloride is indicated by multiple Pb spots on NaCl-eluted chromatograms.
Item Metadata
Title |
Copper, lead and zinc sorption on Wyoming montmorillonite
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1976
|
Description |
Exchange adsorption of Cu²⁺ , Pb²⁺ and Zn²⁺ for Na on Wyoming mont-morillonite, in chloride and nitrate electrolyte solutions less than 10⁻³ M total heavy metal concentration, can be modelled with a simple equilibrium ion-exchange reaction:
Me²⁺ + 2 Na{Mont} = Me{Mont}₂ + 2 Na⁺
where Me. and Mont represent a given heavy metal and montmorillonite. Equilibrium constants for this reaction are equal for Cu²⁺ and Zn²⁺ at 3.0 ± 1,
slightly less than that for Pb²⁺ at 5.0 ± 1, and comparable to constants
calculated for monopositive exchange of K⁺ for Na⁺ (3.0 ± 1) and H⁺ for Na⁺
(2.5 ± .5). Above 10⁻³ M total metal concentration, heavy metal exchange for Na is complicated by variable total Na exchange capacity and by apparent anionic interferences. CuCl₂ and ZnCl₂ electrolyte solutions are more effective Na exchangers at 0.1 M than Cu(NO₃)₂, Pb(NO₃)₂, KC1 or HC1 solutions at the same concentration.
Retardation factors of Cu, Pb and Zn spots eluted across thin layers of Na-montmorillonite (supported by silica gel) by aqueous NaCl and NaNO₃ solutions of 0.05 to 3.0 M concentration suggest, when interpreted with a rudimentary ion-exchange mass transfer model, that metals migrate mainly as monopositive species—perhaps as monohydroxo-complexes within the clay micelle. Precipitation of Pb chloride or hydroxy-chloride is indicated by multiple Pb spots on NaCl-eluted chromatograms.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-02-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0052845
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.