- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Implementation methods for singularly perturbed two-point...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Implementation methods for singularly perturbed two-point boundary value problems Jacobs, Simon
Abstract
In this thesis we consider the numerical solution of singularly perturbed two-point boundary value problems in ordinary differential equations. We examine implementation methods for general purpose solvers of first order linear systems. The basic difference scheme is collocation at Gauss points, with a new symmetric Runge-Kutta implementation. Adaptive mesh selection is based on localized error estimates at the collocation points. These methods are implemented as modifications to the successful collocation code, COLSYS (Ascher, Christiansen & Russell), which was designed for mildly stiff problems only. Efficient high order approximations to extremely stiff problems are obtained, and comparisons to COLSYS show that the modifications work much better as the singular perturbation parameter gets small (i.e. the problem gets stiff), for both boundary layer and turning point problems.
Item Metadata
Title |
Implementation methods for singularly perturbed two-point boundary value problems
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1986
|
Description |
In this thesis we consider the numerical solution of singularly perturbed two-point boundary value problems in ordinary differential equations. We examine implementation methods for general purpose solvers of first order linear systems. The basic difference scheme is collocation at Gauss points, with a new symmetric Runge-Kutta implementation. Adaptive mesh selection is based on localized error estimates at the collocation points. These methods are implemented as modifications to the successful collocation code, COLSYS (Ascher, Christiansen & Russell), which was designed for mildly stiff problems only. Efficient high order approximations to extremely stiff problems are obtained, and comparisons to COLSYS show that the modifications work much better as the singular perturbation parameter gets small (i.e. the problem gets stiff), for both boundary layer and turning point problems.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2010-06-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0051889
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.