- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Ecsp : an efficient clustered super-peer architecture...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Ecsp : an efficient clustered super-peer architecture for P2P networks Li, Juan
Abstract
Peer-to-peer (P2P) computing has become increasingly popular in recent years. It offers many attractive features, such as self-organization, load-balancing, availability, fault tolerance, and anonymity. However, it also faces some serious challenges. In this thesis, we propose an Efficient Clustered Super-Peer P2P architecture (ECSP) to overcome the scalability and efficiency problems of existing unstructured P2P systems, using a semi-centralized hierarchical structure: With ECSP, peers are grouped into clusters according to their topological proximity, and super-peers are selected from regular peers to act as cluster leaders and service providers. These super-peers are also connected to each other, forming a backbone overlay network operating as a distinct, yet integrated, application. To maintain the dynamically adaptive overlay network and to manage the routing on it, we propose an application level broadcasting protocol: Efa. Applying only a small amount of information about the topology of a network, Efa is as simple as flooding, a conventional method used in unstructured P2P systems. By eliminating many duplicated messages, Efa is much more efficient and scalable than flooding, and furthermore, it is completely decentralized and self-organized. Our experimental results prove that ESCP architecture, combined with the super-peer backbone protocol, can generate impressive levels of performance and scalability.
Item Metadata
Title |
Ecsp : an efficient clustered super-peer architecture for P2P networks
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2003
|
Description |
Peer-to-peer (P2P) computing has become increasingly popular in recent years. It offers many attractive features, such as self-organization, load-balancing, availability, fault tolerance, and anonymity. However, it also faces some serious challenges. In this thesis, we propose an Efficient Clustered Super-Peer P2P architecture (ECSP) to overcome the scalability and efficiency problems of existing unstructured P2P systems, using a semi-centralized hierarchical structure: With ECSP, peers are grouped into clusters according to their topological proximity, and super-peers are selected from regular peers to act as cluster leaders and service providers. These super-peers are also connected to each other, forming a backbone overlay network operating as a distinct, yet integrated, application. To maintain the dynamically adaptive overlay network and to manage the routing on it, we propose an application level broadcasting protocol: Efa. Applying only a small amount of information about the topology of a network, Efa is as simple as flooding, a conventional method used in unstructured P2P systems. By eliminating many duplicated messages, Efa is much more efficient and scalable than flooding, and furthermore, it is completely decentralized and self-organized. Our experimental results prove that ESCP architecture, combined with the super-peer backbone protocol, can generate impressive levels of performance and scalability.
|
Extent |
3799840 bytes
|
Genre | |
Type | |
File Format |
application/pdf
|
Language |
eng
|
Date Available |
2009-11-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0051183
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2003-11
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.