- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Behaviour of sand under simultaneous increase in stress...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Behaviour of sand under simultaneous increase in stress ratio and rotation of principal stresses Wijewickreme, Dharmapriya
Abstract
Drained behaviour of sands under simultaneous increase in stress ratio and principal stress rotation is investigated. The hollow cylinder torsional (HCT) device which permits independent control of four stress parameters: mean normal stress σ'[subscript]m, stress ratio R, intermediate principal stress parameter b and the inclination α[subscript]σ of σ'₁ to the vertical, is adopted as the testing device. In order to conduct complex stress path testing in the HCT device, a new automatic stress path control system is developed. The stress non-uniformities due to the curvature of the HCT specimen is assessed using an incremental elastic representation of sand behaviour, in order to delineate the domain of stress space that could reliably be explored using the HCT device. It is shown that previous assessments of stress non-uniformities assuming linear elastic soil grossly overestimate the stress non-uniformities in a HCT sand specimen. A much larger domain of stress space with acceptable levels of non-uniformities is apparent from the results of incremental elastic analysis. New domain of stress space for reliable exploration using the HCT device is delineated and the testing program is developed so that all stress paths lie within these acceptable limits. Tests are carried out on pluviated sand under saturated drained conditions. The deformations under increasing R and α[subscript]σ is shown to be path independent, if the final stress state is within the approximate bounds of R ≤ 2 and α[subscript]σ ≤ 45°, regardless of the b or relative density D[subscript]r, levels. With increasing stress ratio R and/or principal stress rotation α[subscript]σ, the deformations gradually become path dependent. Once loaded to a stress state within the domain R ≤ 2 and α[subscript]σ ≤ 45°, the strain response under subsequent principal stress rotation is shown to be independent of the previous loading history. It is demonstrated that the strain response under any general increasing R - α path in the domain of R ≤ 2 and α[subscript]σ ≤ 45° can be predicted using the results of a limited number of tests characterizing that domain. It is shown that these concepts can be extended to loading paths which involve simultaneous increase of three stress parameters. Strain increment direction α[subscript]Δε is shown to be approximately coincident with and totally governed by the stress increment direction α[subscript]Δσ when the stress increment direction α[subscript]Δσ is more inclined towards the vertical deposition direction. When the stress increment direction is inclined closer to the bedding plane, the strain increment direction depends in addition, on other parameters such as R, α[subscript]σ and R[subscript]r etc. Under any stress path involving principal stress rotation, the deformations decrease with increasing density and therefore the principal stress rotation is more crucial in loose sands. Deformations increase with the level of stress ratio R. Level of b parameter does not affect deformations under principal stress rotation, if the rotations are small. However, with increasing α[subscript]σ deformations due to principal stress rotation tend to increase with decreasing b value.
Item Metadata
Title |
Behaviour of sand under simultaneous increase in stress ratio and rotation of principal stresses
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
1990
|
Description |
Drained behaviour of sands under simultaneous increase in stress ratio and principal stress rotation is investigated. The hollow cylinder torsional (HCT) device which permits independent control of four stress parameters: mean normal stress σ'[subscript]m, stress ratio R, intermediate principal stress parameter b and the inclination α[subscript]σ of σ'₁ to the vertical, is adopted as the testing device.
In order to conduct complex stress path testing in the HCT device, a new automatic
stress path control system is developed. The stress non-uniformities due to the curvature of the HCT specimen is assessed using an incremental elastic representation of sand behaviour, in order to delineate the domain of stress space that could reliably be explored using the HCT device. It is shown that previous assessments of stress non-uniformities assuming linear elastic soil grossly overestimate the stress non-uniformities in a HCT sand specimen. A much larger domain of stress space with acceptable levels of non-uniformities is apparent from the results of incremental elastic analysis. New domain of stress space for reliable exploration using the HCT device is delineated and the testing program is developed so that all stress paths lie within these acceptable limits. Tests are carried out on pluviated sand under saturated drained conditions.
The deformations under increasing R and α[subscript]σ is shown to be path independent, if the final stress state is within the approximate bounds of R ≤ 2 and α[subscript]σ ≤ 45°, regardless of the b or relative density D[subscript]r, levels. With increasing stress ratio R and/or principal stress rotation α[subscript]σ, the deformations gradually become path dependent.
Once loaded to a stress state within the domain R ≤ 2 and α[subscript]σ ≤ 45°, the strain response under subsequent principal stress rotation is shown to be independent of the previous loading history. It is demonstrated that the strain response under any general increasing R - α path in the domain of R ≤ 2 and α[subscript]σ ≤ 45° can be predicted using the results of a limited number of tests characterizing that domain. It is shown that these concepts can be extended to loading paths which involve simultaneous increase of three stress parameters.
Strain increment direction α[subscript]Δε is shown to be approximately coincident with and totally governed by the stress increment direction α[subscript]Δσ when the stress increment direction α[subscript]Δσ is more inclined towards the vertical deposition direction. When the stress increment direction is inclined closer to the bedding plane, the strain increment direction depends in addition, on other parameters such as R, α[subscript]σ and R[subscript]r etc.
Under any stress path involving principal stress rotation, the deformations decrease with increasing density and therefore the principal stress rotation is more crucial in loose sands. Deformations increase with the level of stress ratio R. Level of b parameter does not affect deformations under principal stress rotation, if the rotations are small. However, with increasing α[subscript]σ deformations due to principal stress rotation tend to increase with decreasing b value.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2011-02-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
|
DOI |
10.14288/1.0050457
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Campus | |
Scholarly Level |
Graduate
|
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.