- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Truncated CD19 as a selection marker for the isolation...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Truncated CD19 as a selection marker for the isolation of stem cell derived β-cells Huang, Luo Ting (Helen)
Abstract
Stem cell-derived β-cells (SCβ-cell) are a renewable and scalable alternative to cadaveric islet transplants as a cell replacement therapy for type 1 diabetes (T1D). However, heterogeneity within SCβ-cell cultures remains problematic for graft safety and function. Magnetic selection of SCβ-cells expressing a unique cell surface marker may help deplete undesirable cell types and facilitate functional maturation. This is study, I explored CD19 as a potential cell surface marker for the enrichment of insulin-expressing SCβ-cells. Using CRISPR/Cas9 technology, I created a knock-in add-on of CD19-mScarlet downstream of the insulin coding sequence in human embryonic stem cells (hESCs). I established reproducible SCβ-cell surface expression of CD19-mScarlet. Importantly, I developed and optimized a magnetic sorting protocol for CD19-mScarlet-expressing cells, forming enriched SCβ-cell clusters with improved glucose-stimulated c-peptide secretion. This strategy holds promise to facilitate large-scale production of functional SCβ-cells for T1D disease modeling and cell replacement therapy.
Item Metadata
| Title |
Truncated CD19 as a selection marker for the isolation of stem cell derived β-cells
|
| Creator | |
| Supervisor | |
| Publisher |
University of British Columbia
|
| Date Issued |
2023
|
| Description |
Stem cell-derived β-cells (SCβ-cell) are a renewable and scalable alternative to cadaveric islet transplants as a cell replacement therapy for type 1 diabetes (T1D). However, heterogeneity within SCβ-cell cultures remains problematic for graft safety and function. Magnetic selection of SCβ-cells expressing a unique cell surface marker may help deplete undesirable cell types and facilitate functional maturation. This is study, I explored CD19 as a potential cell surface marker for the enrichment of insulin-expressing SCβ-cells. Using CRISPR/Cas9 technology, I created a knock-in add-on of CD19-mScarlet downstream of the insulin coding sequence in human embryonic stem cells (hESCs). I established reproducible SCβ-cell surface expression of CD19-mScarlet. Importantly, I developed and optimized a magnetic sorting protocol for CD19-mScarlet-expressing cells, forming enriched SCβ-cell clusters with improved glucose-stimulated c-peptide secretion. This strategy holds promise to facilitate large-scale production of functional SCβ-cells for T1D disease modeling and cell replacement therapy.
|
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2023-07-05
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0434147
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Graduation Date |
2023-11
|
| Campus | |
| Scholarly Level |
Graduate
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International