UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Kinetic investigation of rare earth leaching on Labrador Canada rare earth ore in acidic sulphate medium Sesen, Halil


The kinetics of sulphuric acid leaching of rare earth elements in a sample from the Foxtrot deposit in Labrador, Canada was investigated. The selected parameters were, particle size fraction of +38 –53 µm, +53 -75 µm, +75 -106 µm, and +106 -150 µm, sulphuric acid concentration of 0.5 M, 1.5 M and 3 M, temperature of 30, 60, and 90 ℃. The highest extraction efficiency for Ce, Nd and Y was 96.72%, 84.91% and 72.83%, respectively at the highest temperature, highest sulphuric acid concentration and smallest particle size fraction. The highest selectivity was achieved at +106 -150 μm, temperature of 90 ℃, and sulphuric acid concentration of 0.5 M. It was determined that the kinetic experimental data followed the Jander product layer diffusion kinetic model, a type of shrinking core model, for all three elements. The activation energies for Ce, Nd, and Y were found to be 56.19 kJ/mol, 57.09 kJ/mol, and 38.57 kJ/mol, respectively. After identifying the most suitable kinetic model and calculating the activation energies, the rate orders were calculated for the mathematical model. These values were used to develop semi-empirical mathematical models for each element. The results showed that Y was the least affected by acid concentration and particle size, while Ce and Nd were the most affected. The acid leaching process resulted in crack and porosity formation for certain minerals but no notable change in particle size which is in a good agreement with the Jander kinetic model. The high activation energies with product layer diffusion control suggested that a mixed kinetic model might be in control of the leaching mechanism.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International