- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Plastid phylogenomics and molecular evolution of Thismiaceae...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Plastid phylogenomics and molecular evolution of Thismiaceae (Dioscoreales) Garrett, Natalie
Abstract
PREMISE OF THE THESIS: Species in Thismiaceae can no longer photosynthesize, and instead obtain carbon from soil fungi. Here I infer Thismiaceae phylogeny using plastid genome data, and characterize the molecular evolution of this genome. METHODS: I assembled five Thismiaceae plastid genomes from genome skimming data, adding to previously published data for phylogenomic inference. I investigated plastid genome structural changes considering locally colinear blocks (LCBs). I also characterized shifts in selection pressure in retained genes by considering changes in ω, the ratio of non-synonymous to synonymous changes. KEY RESULTS: Thismiaceae experienced two major pulses of gene loss around the early diversification of the family, with subsequent scattered gene losses in descendent lineages. In addition to massive size reduction, plastid genomes experienced occasional inversions and two losses of the inverted repeat (IR) region. Retained plastid genes remain under generally strong purifying selection (ω
Item Metadata
Title |
Plastid phylogenomics and molecular evolution of Thismiaceae (Dioscoreales)
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2022
|
Description |
PREMISE OF THE THESIS: Species in Thismiaceae can no longer photosynthesize, and instead obtain carbon from soil fungi. Here I infer Thismiaceae phylogeny using plastid genome data, and characterize the molecular evolution of this genome.
METHODS: I assembled five Thismiaceae plastid genomes from genome skimming data, adding to previously published data for phylogenomic inference. I investigated plastid genome structural changes considering locally colinear blocks (LCBs). I also characterized shifts in selection pressure in retained genes by considering changes in ω, the ratio of non-synonymous to synonymous changes.
KEY RESULTS: Thismiaceae experienced two major pulses of gene loss around the early diversification of the family, with subsequent scattered gene losses in descendent lineages. In addition to massive size reduction, plastid genomes experienced occasional inversions and two losses of the inverted repeat (IR) region. Retained plastid genes remain under generally strong purifying selection (ω
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2022-05-02
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0413200
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2022-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International