- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Biochemical and structural characterization of the...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Biochemical and structural characterization of the Elongator, TINTIN, and PI3K gamma complexes Dalwadi, Udit
Abstract
Conserved from yeast to humans and composed of six subunits (Elp1 – Elp6), Elongator catalyzes the modification of the anticodon loop of transfer RNAs (tRNAs) and in turn regulates messenger RNA (mRNA) decoding efficiency. By examining human Elongator and its subunits by single-particle electron microscopy (EM), co-purification and pulldown assays, and substrate binding assays, we found that the complex shares similar overall morphologies as the yeast counterpart, and the accessory proteins serve to stabilize ELP3 and improve the binding of substrate tRNAs. Collectively, our work generated insights into the assembly process of this complex and established a platform for characterizing human Elongator and its variants. The heterotrimeric TINTIN complex is an important regulator of transcriptional elongation. Composed of the Eaf3, Eaf5, and Eaf7 proteins, TINTIN exists as both as a module within the NuA4 histone acetyltransferase complex as well as independently. TINTIN is targeted to chromatin through Eaf3, a chromodomain-containing protein that is shared with the Rpd3S histone deacetylase complex. A combination of co-immunoprecipitation and hydrogen deuterium exchange mass spectrometry (HDX-MS) revealed that upon binding Eaf5 and Eaf7, Eaf3 undergoes conformational changes which improves its affinity towards nucleosomes trimethylated at Lys 36 of histone H3 (H3K36me3). Negative stain EM analysis of TINTIN in complex with nucleosomes revealed that TINTIN binds to the disc edge of nucleosomes with increased specificity in the presence of H3K36me3. Together, this work provides molecular insights into the dynamics of TINTIN and the mechanism by which its interactions with chromatin are regulated. The class IB phosphoinositide 3-kinase (PI3K), PI3Kγ, is a master regulator of immune cell function and a promising drug target for both cancer and inflammatory diseases. Critical to PI3Kγ function is the association of the p110γ catalytic subunit to either a p101 or p84 regulatory subunit, which mediates activation by G protein–coupled receptors. The cryo–electron microscopy structure of p110γ-p101 reveals the novel architecture of the p101 regulatory subunit and demonstrates a unique assembly that is distinct from other class I PI3K complexes.
Item Metadata
Title |
Biochemical and structural characterization of the Elongator, TINTIN, and PI3K gamma complexes
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2021
|
Description |
Conserved from yeast to humans and composed of six subunits (Elp1 – Elp6), Elongator catalyzes the modification of the anticodon loop of transfer RNAs (tRNAs) and in turn regulates messenger RNA (mRNA) decoding efficiency. By examining human Elongator and its subunits by single-particle electron microscopy (EM), co-purification and pulldown assays, and substrate binding assays, we found that the complex shares similar overall morphologies as the yeast counterpart, and the accessory proteins serve to stabilize ELP3 and improve the binding of substrate tRNAs. Collectively, our work generated insights into the assembly process of this complex and established a platform for characterizing human Elongator and its variants.
The heterotrimeric TINTIN complex is an important regulator of transcriptional elongation. Composed of the Eaf3, Eaf5, and Eaf7 proteins, TINTIN exists as both as a module within the NuA4 histone acetyltransferase complex as well as independently. TINTIN is targeted to chromatin through Eaf3, a chromodomain-containing protein that is shared with the Rpd3S histone deacetylase complex. A combination of co-immunoprecipitation and hydrogen deuterium exchange mass spectrometry (HDX-MS) revealed that upon binding Eaf5 and Eaf7, Eaf3 undergoes conformational changes which improves its affinity towards nucleosomes trimethylated at Lys 36 of histone H3 (H3K36me3). Negative stain EM analysis of TINTIN in complex with nucleosomes revealed that TINTIN binds to the disc edge of nucleosomes with increased specificity in the presence of H3K36me3. Together, this work provides molecular insights into the dynamics of TINTIN and the mechanism by which its interactions with chromatin are regulated.
The class IB phosphoinositide 3-kinase (PI3K), PI3Kγ, is a master regulator of immune cell function and a promising drug target for both cancer and inflammatory diseases. Critical to PI3Kγ function is the association of the p110γ catalytic subunit to either a p101 or p84 regulatory subunit, which mediates activation by G protein–coupled receptors. The cryo–electron microscopy structure of p110γ-p101 reveals the novel architecture of the p101 regulatory subunit and demonstrates a unique assembly that is distinct from other class I PI3K complexes.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2023-01-31
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0404509
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2022-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International