- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Datacenter resource scheduling for networked cloud...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Datacenter resource scheduling for networked cloud applications Kodirov, Nodir
Abstract
Cloud computing is an integral part of modern life, which became increasingly apparent during the COVID-19 pandemic. Applications that run on the cloud facilitate many of our daily activities, including education, retail, and high quality video calls that keep us connected. These applications run on one or more Virtual Machines (VM), where networked cloud applications can benefit from inter-VM network bandwidth guarantees. For example, an entire class of network-intensive big-data processing applications run more quickly with sufficient network bandwidth guarantees. However, offering inter-VM bandwidth guarantees creates challenges both for resource allocation latency and datacenter utilization, because the resource scheduler must satisfy per-VM resource demands and inter-VM bandwidth requirements. This dissertation demonstrates that it is feasible to offer inter-VM bandwidth guarantees as a first class cloud service. We develop several algorithms that allow efficient sharing of datacenter network bandwidth across tenants. These algorithms maintain high datacenter utilization while offering low allocation latency. Specifically, we propose constraint-solver-based algorithms that scale well to datacenters with hundreds of servers and heuristic-based algorithms that scale well to large-scale datacenters with thousands of servers. We demonstrate the practicality of these algorithms by integrating them into the OpenStack cloud management framework. We also construct a realistic cloud workload with bandwidth requirements, which we use to evaluate the efficiency of our resource scheduling algorithms. We demonstrate that selling inter-VM network bandwidth guarantees as a service increases cloud provider revenue. Furthermore, it is possible to do so without changing cloud affordability for the tenants due to shortened job completion times for the tenant applications. Savings from the shortened VM lifetimes can be used to cover the network bandwidth guarantees service cost, which allows tenants to complete their job faster without paying extra. For example, we show that cloud providers can generate up to 63% extra revenue compared to the case when they do not offer network bandwidth guarantees.
Item Metadata
Title |
Datacenter resource scheduling for networked cloud applications
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2021
|
Description |
Cloud computing is an integral part of modern life, which became increasingly apparent during the COVID-19 pandemic. Applications that run on the cloud facilitate many of our daily activities, including education, retail, and high quality video calls that keep us connected. These applications run on one or more Virtual Machines (VM), where networked cloud applications can benefit from inter-VM network bandwidth guarantees. For example, an entire class of network-intensive big-data processing applications run more quickly with sufficient network bandwidth guarantees.
However, offering inter-VM bandwidth guarantees creates challenges both for resource allocation latency and datacenter utilization, because the resource scheduler must satisfy per-VM resource demands and inter-VM bandwidth requirements.
This dissertation demonstrates that it is feasible to offer inter-VM bandwidth guarantees as a first class cloud service. We develop several algorithms that allow efficient sharing of datacenter network bandwidth across tenants. These algorithms maintain high datacenter utilization while offering low allocation latency. Specifically, we propose constraint-solver-based algorithms that scale well to datacenters with hundreds of servers and heuristic-based algorithms that scale well to large-scale datacenters with thousands of servers. We demonstrate the practicality of these algorithms by integrating them into the OpenStack cloud management framework. We also construct a realistic cloud workload with bandwidth requirements, which we use to evaluate the efficiency of our resource scheduling algorithms.
We demonstrate that selling inter-VM network bandwidth guarantees as a service increases cloud provider revenue. Furthermore, it is possible to do so without changing cloud affordability for the tenants due to shortened job completion times for the tenant applications. Savings from the shortened VM lifetimes can be used to cover the network bandwidth guarantees service cost, which allows tenants to complete their job faster without paying extra. For example, we show that cloud providers can generate up to 63% extra revenue compared to the case when they do not offer network bandwidth guarantees.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2021-10-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution 4.0 International
|
DOI |
10.14288/1.0402558
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2021-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution 4.0 International