- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Universal graph compression : stochastic block models
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Universal graph compression : stochastic block models Wang, Ziao
Abstract
Motivated by the prevalent data science applications of processing and mining large-scale graph data such as social networks, web graphs, and biological networks, as well as the high I/O and communication costs of storing and transmitting such data, this thesis investigates lossless compression of data appearing in the form of a labeled graph. In particular, we consider a widely used random graph model, stochastic block model (SBM), which captures the clustering effects in social networks. An information-theoretic universal compression framework is applied, in which one aims to design a single compressor that achieves the asymptotically optimal compression rate, for every SBM distribution, without knowing the parameters of the SBM that generates the data. Such a graph compressor is proposed in this thesis, which universally achieves the optimal compression rate for a wide class of SBMs with edge probabilities ranging from $O(1)$ to $\Omega(1/n^{2-\e})$ for any $0<\e <1$. Existing universal compression techniques are developed mostly for stationary ergodic one-dimensional sequences with fixed alphabet size and entropy linear in the number of variables. However, the adjacency matrix of SBM has complex two-dimensional correlations and sublinear entropy in the sparse regime. These challenges are alleviated through a carefully designed transform that converts two-dimensional correlated data into almost i.i.d. submatrices. The sequence of submatrices is then compressed by a Krichevsky--Trofimov compressor, whose length analysis is generalized from i.i.d. sequences to identically distributed but arbitrarily correlated sequences. In four benchmark graph datasets (protein-to-protein interaction, LiveJournal friendship, Flickr, and YouTube), the compressed files from competing algorithms (including CSR, Ligra+, PNG image compressor, and Lempel--Ziv compressor for two-dimensional data) take 2.4 to 27 times the space needed by the proposed scheme.
Item Metadata
Title |
Universal graph compression : stochastic block models
|
Creator | |
Supervisor | |
Publisher |
University of British Columbia
|
Date Issued |
2021
|
Description |
Motivated by the prevalent data science applications of processing and mining large-scale graph data such as social networks, web graphs, and biological networks, as well as the high I/O and communication costs of storing and transmitting such data, this thesis investigates lossless compression of data appearing in the form of a labeled graph. In particular, we consider a widely used random graph model, stochastic block model (SBM), which captures the clustering effects in social networks. An information-theoretic universal compression framework is applied, in which one aims to design a single compressor that achieves the asymptotically optimal compression rate, for every SBM distribution, without knowing the parameters of the SBM that generates the data. Such a graph compressor is proposed in this thesis, which universally achieves the optimal compression rate for a wide class of SBMs with edge probabilities ranging from $O(1)$ to $\Omega(1/n^{2-\e})$ for any $0<\e <1$. Existing universal compression techniques are developed mostly for stationary ergodic one-dimensional sequences with fixed alphabet size and entropy linear in the number of variables. However, the adjacency matrix of SBM has complex two-dimensional correlations and sublinear entropy in the sparse regime. These challenges are alleviated through a carefully designed transform that converts two-dimensional correlated data into almost i.i.d. submatrices. The sequence of submatrices is then compressed by a Krichevsky--Trofimov compressor, whose length analysis is generalized from i.i.d. sequences to identically distributed but arbitrarily correlated sequences. In four benchmark graph datasets (protein-to-protein interaction, LiveJournal friendship, Flickr, and YouTube), the compressed files from competing algorithms (including CSR, Ligra+, PNG image compressor, and Lempel--Ziv compressor for two-dimensional data) take 2.4 to 27 times the space needed by the proposed scheme.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2021-09-01
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0401839
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2021-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International