- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Universal graph compression : stochastic block models
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Universal graph compression : stochastic block models Wang, Ziao
Abstract
Motivated by the prevalent data science applications of processing and mining large-scale graph data such as social networks, web graphs, and biological networks, as well as the high I/O and communication costs of storing and transmitting such data, this thesis investigates lossless compression of data appearing in the form of a labeled graph. In particular, we consider a widely used random graph model, stochastic block model (SBM), which captures the clustering effects in social networks. An information-theoretic universal compression framework is applied, in which one aims to design a single compressor that achieves the asymptotically optimal compression rate, for every SBM distribution, without knowing the parameters of the SBM that generates the data. Such a graph compressor is proposed in this thesis, which universally achieves the optimal compression rate for a wide class of SBMs with edge probabilities ranging from $O(1)$ to $\Omega(1/n^{2-\e})$ for any $0
Item Metadata
| Title |
Universal graph compression : stochastic block models
|
| Creator | |
| Supervisor | |
| Publisher |
University of British Columbia
|
| Date Issued |
2021
|
| Description |
Motivated by the prevalent data science applications of processing and mining large-scale graph data such as social networks, web graphs, and biological networks, as well as the high I/O and communication costs of storing and transmitting such data, this thesis investigates lossless compression of data appearing in the form of a labeled graph. In particular, we consider a widely used random graph model, stochastic block model (SBM), which captures the clustering effects in social networks. An information-theoretic universal compression framework is applied, in which one aims to design a single compressor that achieves the asymptotically optimal compression rate, for every SBM distribution, without knowing the parameters of the SBM that generates the data. Such a graph compressor is proposed in this thesis, which universally achieves the optimal compression rate for a wide class of SBMs with edge probabilities ranging from $O(1)$ to $\Omega(1/n^{2-\e})$ for any $0
|
| Genre | |
| Type | |
| Language |
eng
|
| Date Available |
2021-09-01
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0401839
|
| URI | |
| Degree (Theses) | |
| Program (Theses) | |
| Affiliation | |
| Degree Grantor |
University of British Columbia
|
| Graduation Date |
2021-11
|
| Campus | |
| Scholarly Level |
Graduate
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International