UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Universal graph compression : stochastic block models Wang, Ziao


Motivated by the prevalent data science applications of processing and mining large-scale graph data such as social networks, web graphs, and biological networks, as well as the high I/O and communication costs of storing and transmitting such data, this thesis investigates lossless compression of data appearing in the form of a labeled graph. In particular, we consider a widely used random graph model, stochastic block model (SBM), which captures the clustering effects in social networks. An information-theoretic universal compression framework is applied, in which one aims to design a single compressor that achieves the asymptotically optimal compression rate, for every SBM distribution, without knowing the parameters of the SBM that generates the data. Such a graph compressor is proposed in this thesis, which universally achieves the optimal compression rate for a wide class of SBMs with edge probabilities ranging from $O(1)$ to $\Omega(1/n^{2-\e})$ for any $0

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International