The Open Collections website will be undergoing maintenance on Wednesday December 7th from 9pm to 11pm PST. The site may be temporarily unavailable during this time.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Controlled polymerization of organic semiconductor monomers : applications in hierarchical nanostructures and luminescent materials Tonge, Christopher

Abstract

Emerging methods for the fabrication of multifunctional nanostructures from soft matter have allowed for the synthesis of complex macromolecules with varied morphologies and physical properties. Using organic semiconductors as building blocks, nanostructures with novel emissive properties and interesting charge-transport behaviour are increasingly accessible. Self-assembly processes have been developed to promote nanofiber formation, giving access to previously inaccessible functional nanostructures. However, self-assembly routes to nanofibers are limited by the metastability of the resulting structures, leading to a demand for covalent methodologies for their assembly. This thesis presents an optimized method for the synthesis of polymeric organic semiconductors via controlled radical polymerization and methods by which these linear polymers can be used to generate complex, covalently bound nanofibers. We proposed that by controlling the composition and ordering of the polymeric components, multiblock bottlebrush copolymers could be prepared with photophysical and electronic properties that could not be achieved in a linear polymer morphology. Using this method, multicomponent fibers were prepared resembling nanoscale organic electronic devices such as two-component diodes. This bottlebrush framework can also be used to control the electronic interaction between multiple organic semiconductors within the brush. This property was exploited to control through-space charge transfer thermally activated delayed fluorescence (TSCT TADF) in bottlebrush fibers. The polymerization methodologies developed for the synthesis of organic semiconductors were also explored as a method to prepare luminescent copolymers composed of a host monomer and a series of emissive monomers. We propose that using this methodology, low-cost polymers can be prepared that exhibit the photophysical properties of the emissive dopant. This will allow us to prepare polymers that exhibit a range of interesting properties including deep blue electroluminescence, TADF, and ratiometric fluorescent oxygen sensing. Lastly, a pair of violet emitters were prepared using a novel planarized triphenylamine donor and a sulfone or sulfoxide acceptor. State-of-the-art deep blue emitters typically exhibit low photostability. We propose that stable emitters can be achieved using a planarized hexamethylazatriangulene donor in a donor-acceptor framework. The reduced torsional strain and locked planar rigidity increase the stability of this donor while reducing nonradiative decay resulting in highly emissive compounds with resistance to photobleaching.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International