- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Dynamo : an open source python application for comprehensive...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Dynamo : an open source python application for comprehensive structural and functional analysis of developing neurons. Coleman, Patrick
Abstract
Neurons are notoriously complex cells, generating high-frequency functional voltage dynamics inside a tree-like branching arbor structure. Developmental cellular neuroscience examines the processes underlying how these cells form their structure, the causal relationship between growth and firing dynamics, and how disruption of this system may result in developmental disorders such as Epilepsy and Autism Spectrum Disorder (Parenti et al., 2020). As more is discovered, it becomes clear that additional information is needed to paint the full picture of the environment and rules underlying development. Improvements have been made in terms of hardware (such as Light sheet or Two-photon microscopes), and biology (e.g. voltage- and calcium- sensors) which require similar improvements in the software and analysis tools to explore the raw data and find the information it contains. This research summarizes current software tools for developmental neuroscience, and combines these with new analysis and visualization features in an open-source python application called Dynamo. The features of Dynamo are explained, and the process of going from raw recordings to scientific results is shown using example neuron recordings from development of Xenopus laevis in vivo tectal neurons.
Item Metadata
Title |
Dynamo : an open source python application for comprehensive structural and functional analysis of developing neurons.
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2021
|
Description |
Neurons are notoriously complex cells, generating high-frequency functional voltage dynamics inside a tree-like branching arbor structure. Developmental cellular neuroscience examines the processes underlying how these cells form their structure, the causal relationship between growth and firing dynamics, and how disruption of this system may result in developmental disorders such as Epilepsy and Autism Spectrum Disorder (Parenti et al., 2020). As more is discovered, it becomes clear that additional information is needed to paint the full picture of the environment and rules underlying development. Improvements have been made in terms of hardware (such as Light sheet or Two-photon microscopes), and biology (e.g. voltage- and calcium- sensors) which require similar improvements in the software and analysis tools to explore the raw data and find the information it contains. This research summarizes current software tools for developmental neuroscience, and combines these with new analysis and visualization features in an open-source python application called Dynamo. The features of Dynamo are explained, and the process of going from raw recordings to scientific results is shown using example neuron recordings from development of Xenopus laevis in vivo tectal neurons.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2021-04-06
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0396549
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2021-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International