UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Cognitive orientation to occupational performance : effect on brain structure/function and motor outcomes in children with developmental coordination disorder Izadi-Najafabadi, Sara

Abstract

Children with developmental coordination disorder (DCD) have difficulty learning motor skills, which can affect their participation in activities of daily living and psychosocial well-being. Over 50% of children with DCD also have attention deficit hyperactivity disorder (ADHD), which further exacerbates their motor function and quality of life. Cognitive Orientation to Occupational Performance (CO-OP), a rehabilitation approach developed for children with DCD, uses problem-solving strategies to help children learn motor skills they wish to achieve. While this approach has been effective for children with DCD, few studies have examined its effectiveness for children with co-occurring ADHD. Further, the underlying mechanisms of this intervention are unknown. In this randomized waitlist-controlled trial (ClinicalTrials.gov ID: NCT02597751), I used MRI and motor outcome measures to determine whether CO-OP intervention: (1) was effective in improving motor goals in children with DCD +/- ADHD; (2) induced changes in functional connectivity of the brain; and (3) promoted positive neuroplastic changes in white matter microstructure. Thirty-seven children with DCD and 41 children with DCD+ADHD, aged 8-12 years old, were randomized to treatment or waitlist groups at their first MRI. The treatment group began the intervention after their MRI scan and pre-assessment, and returned for a post-treatment assessment/scan at 3 months, and a follow-up scan at 6 months; the waitlist group waited 3 months before their second MRI, received intervention, and then had a post-treatment assessment and MRI scan. Results showed that CO-OP is effective for children with DCD +/- ADHD, in achieving functional motor goals. Neuroimaging results showed improved functional connectivity within the default mode network (DMN) as well as improved microstructural properties in the white matter underlying the DMN in children with DCD only. However, there was a lack of transfer to other motor skills and brain changes in children with DCD+ADHD. Given the role of the DMN in self-regulation, emotion regulation, and attention regulation and in accordance with cognitive models of motor learning, I suggest that these cognitive processes may underlie motor skills improvement after CO-OP in children with DCD. Modifications to the CO-OP protocol may be required to induce similar brain changes in children with DCD+ADHD.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International