- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Characterizing the relationship between airway anatomy...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Characterizing the relationship between airway anatomy and physiological function : implications of sex and swim training Peters, Carli Monica
Abstract
Purpose: Two optical coherence tomography (OCT) imaging studies were performed to examine how sex differences in airway anatomy affect respiratory mechanics during exercise and how airway anatomy may be altered due to swim training. Methods: Study #1 was designed as a proof-of-concept and is presented in Chapters 2 and 3. Chapter 2 presents respiratory mechanics during exercise, airway diameter, airway luminal area (Ai), index of airway size, and Weibel model area data measured from OCT images. Chapter 3 describes development of OCT software to measure Ai, wall area (WA), wall area percent (WA%), and wall thickness (WT). Reproducibility of OCT-derived airway measures are presented. In Study #2, males and females (19-30 years) performed exercise to exhaustion and OCT airway images were obtained. Of the 25 subjects, 7 (6 females, 1 male) were competitive swimmers. Chapter 4 investigated whether sex differences in Ai affect mechanical ventilatory constraint and resistive work of breathing (Wb) during exercise. Chapter 5 investigated whether swim training leads to airway remodeling detectable with OCT. Conclusions: Imaging the airways of healthy males and females with OCT provides measures of Ai across airway generations that are related to respiratory mechanics during exercise (Chapter 2). The software developed had a smaller coefficient of variation than other techniques and can detect smaller differences in OCT-derived airway measures between groups in future airway remodeling studies (Chapter 3). Females tend to have smaller 4th-6th generation Ai measures relative to males. When ventilation is high, resistance to inspired flow is larger in females and is associated with two measures of airway size: index of airway size and Weibel area. This study suggests that innate sex differences exist in Ai which result in a greater resistive Wb in females compared to males during exercise (Chapter 4). Lastly, OCT can be used to detect changes in airway wall structure in male and female swimmers (Chapter 5). Results of this thesis extend our understanding of how airway size is an important determinant of respiratory mechanics during exercise and provides evidence that OCT can be utilized to study airway anatomy in healthy humans and airway remodeling in swimmers.
Item Metadata
Title |
Characterizing the relationship between airway anatomy and physiological function : implications of sex and swim training
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2020
|
Description |
Purpose: Two optical coherence tomography (OCT) imaging studies were performed to examine how sex differences in airway anatomy affect respiratory mechanics during exercise and how airway anatomy may be altered due to swim training.
Methods: Study #1 was designed as a proof-of-concept and is presented in Chapters 2 and 3. Chapter 2 presents respiratory mechanics during exercise, airway diameter, airway luminal area (Ai), index of airway size, and Weibel model area data measured from OCT images. Chapter 3 describes development of OCT software to measure Ai, wall area (WA), wall area percent (WA%), and wall thickness (WT). Reproducibility of OCT-derived airway measures are presented. In Study #2, males and females (19-30 years) performed exercise to exhaustion and OCT airway images were obtained. Of the 25 subjects, 7 (6 females, 1 male) were competitive swimmers. Chapter 4 investigated whether sex differences in Ai affect mechanical ventilatory constraint and resistive work of breathing (Wb) during exercise. Chapter 5 investigated whether swim training leads to airway remodeling detectable with OCT.
Conclusions: Imaging the airways of healthy males and females with OCT provides measures of Ai across airway generations that are related to respiratory mechanics during exercise (Chapter 2). The software developed had a smaller coefficient of variation than other techniques and can detect smaller differences in OCT-derived airway measures between groups in future airway remodeling studies (Chapter 3). Females tend to have smaller 4th-6th generation Ai measures relative to males. When ventilation is high, resistance to inspired flow is larger in females and is associated with two measures of airway size: index of airway size and Weibel area. This study suggests that innate sex differences exist in Ai which result in a greater resistive Wb in females compared to males during exercise (Chapter 4). Lastly, OCT can be used to detect changes in airway wall structure in male and female swimmers (Chapter 5). Results of this thesis extend our understanding of how airway size is an important determinant of respiratory mechanics during exercise and provides evidence that OCT can be utilized to study airway anatomy in healthy humans and airway remodeling in swimmers.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2021-01-06
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0395495
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2021-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International