- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Adaptive mitigation : a framework for integrating climate...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Adaptive mitigation : a framework for integrating climate adaptation and mitigation solutions in urban multi-unit residential buildings Judah, Ilana
Abstract
Climate change mitigation/sustainability initiatives for the built environment have become well established over the past three decades. With increasing extreme weather events and climate impacts, building industry stakeholders have more recently been advancing adaptation/resilience policies and guidance. However, these initiatives have largely remained separate from mitigation/sustainability, with very limited investigation of their interrelationship. This lack of integration can result in unintended consequences such as increased greenhouse gas (GHG) emissions, augmented risks, and negative health and well-being outcomes. Investigating interactions between adaptation and mitigation strategies provides an opportunity to benefit from synergies, minimize conflicts, and achieve more holistic project solutions. Many researchers have identified the need for integrated assessment methods, frameworks and user-friendly decision-support tools that capture both adaptation and mitigation. While integrated assessment methods have been created for the municipal scale, they are lacking at the scale of buildings and their immediate neighbourhoods. As a response to this gap, this thesis aims to integrate adaptation and mitigation paradigms through the development of an integrated evaluation framework for urban multi-unit residential buildings (MURBs). The framework and associated tools were developed though an iterative process using multiple methods that included document analysis of relevant academic and industry literature, expert interviews in the U.S. and Canada, a series of stakeholder workshops, a survey to elicit feedback on draft framework documents, and case examples from the partner organization, BC Housing. The resulting Integrated Building Adaptation and Mitigation Assessment (IBAMA) framework provides a process-oriented collaborative tool for building owners and design professionals to integrate climate adaptation and mitigation considerations and identify synergies, trade-offs and conflicts between proposed solutions. IBAMA is conceived primarily for the project planning phase, with follow-through during design, construction and project occupancy. It is implemented by means of an introductory primer, a detailed guidelines document, and an associated spreadsheet tool. The framework considers the larger neighbourhood scale, incorporates both technical and socio-economic factors, and is customizable to a project’s unique circumstances.
Item Metadata
Title |
Adaptive mitigation : a framework for integrating climate adaptation and mitigation solutions in urban multi-unit residential buildings
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2020
|
Description |
Climate change mitigation/sustainability initiatives for the built environment have become well established over the past three decades. With increasing extreme weather events and climate impacts, building industry stakeholders have more recently been advancing adaptation/resilience policies and guidance. However, these initiatives have largely remained separate from mitigation/sustainability, with very limited investigation of their interrelationship. This lack of integration can result in unintended consequences such as increased greenhouse gas (GHG) emissions, augmented risks, and negative health and well-being outcomes. Investigating interactions between adaptation and mitigation strategies provides an opportunity to benefit from synergies, minimize conflicts, and achieve more holistic project solutions. Many researchers have identified the need for integrated assessment methods, frameworks and user-friendly decision-support tools that capture both adaptation and mitigation. While integrated assessment methods have been created for the municipal scale, they are lacking at the scale of buildings and their immediate neighbourhoods.
As a response to this gap, this thesis aims to integrate adaptation and mitigation paradigms through the development of an integrated evaluation framework for urban multi-unit residential buildings (MURBs). The framework and associated tools were developed though an iterative process using multiple methods that included document analysis of relevant academic and industry literature, expert interviews in the U.S. and Canada, a series of stakeholder workshops, a survey to elicit feedback on draft framework documents, and case examples from the partner organization, BC Housing.
The resulting Integrated Building Adaptation and Mitigation Assessment (IBAMA) framework provides a process-oriented collaborative tool for building owners and design professionals to integrate climate adaptation and mitigation considerations and identify synergies, trade-offs and conflicts between proposed solutions. IBAMA is conceived primarily for the project planning phase, with follow-through during design, construction and project occupancy. It is implemented by means of an introductory primer, a detailed guidelines document, and an associated spreadsheet tool. The framework considers the larger neighbourhood scale, incorporates both technical and socio-economic factors, and is customizable to a project’s unique circumstances.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-12-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0395287
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2021-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International