UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

NLRP3 inflammasome contributes to retinal ganglion cell (RGC) death in the DBA/2J mouse model of glaucoma Li, Siqi


Glaucoma is a neurodegenerative eye disease characterized by elevated intraocular pressure (IOP) in the majority of cases, followed by retinal ganglion cell (RGC) loss. Neuroinflammation is an important factor contributing to RGC death during glaucoma pathogenesis. Evidence suggests that NLRP3 (nucleotide-binding oligomerization domain (NOD)-like receptor protein 3) inflammasome activity is associated with IOP-induced RGC death. To investigate whether NLRP3 inflammasome is activated by IOP elevation, the DBA/2J mouse model of glaucoma with age-related IOP elevation was studied. Female mice were sacrificed at 3 or 9 months of age. IOP was measured before sacrifice. NLRP3 inflammasome related proteins and RGC loss were quantified in eye tissues. To further assess whether NLRP3 inflammasome activation contributes to RGC death, mice were treated with 8 weeks of daily oral administration of 30 mg/kg MCC950, a specific small-molecule drug that prevents NLRP3 inflammasome activation. In the 9-month DBA/2J mice, IOP was significantly increased compared to 3-month mice. Concomitantly, protein levels of NLRP3 and cleaved caspase-1 were significantly higher in 9- month DBA/2J. The plasma level of circulating MCC950 (7650±775.3 ng/ml) after 8 weeks of drug administration was above the efficacy threshold (>1000 ng/ml). The MCC950 treated mice retained a higher number of surviving RGCs, exhibited lower levels of NLRP3 expression and caspase-1 cleavage compared to age-matched controls. In this study, we discovered MCC950 treatment inhibits the age-related increase of NLRP3 inflammasome activity and ameliorates RGC loss, suggesting that NLRP3 inflammasome activation is associated with RGC death in this mouse model.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International