- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Thinking of (1,1) knots using elastic bands on peg-boards...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Thinking of (1,1) knots using elastic bands on peg-boards and combed glazing on the mille-feuille Marian, Mihai
Abstract
Despite the analytic underpinnings of Heegaard Floer theory and its refine- ment to knots, there is an interesting class of knots, the (1, 1) knots, which have the special property that their knot Floer homology can be computed na ̈ıvely, straight from the definition, using only combinatorial techniques. In this thesis, we survey (1,1)-knots, describe their knot Floer homology, and focus in particular on the landscape of the manifolds obtained by Dehn surgery on these knots. More precisely, J. Greene, S. Lewallen and F. Vafaee recently described a simple criterion for determining if a (1, 1) knot admits a nontrivial surgery to an L-space, using the orientation of the curves in a doubly pointed genus-1 Heegaard diagram for the knot. This character- ization is formally very similar to a characterization due to J. Hanselman, J. Rasmussen and L. Watson, using a graphical calculus they developed for working with the bordered Floer theory. We relate these two perspectives, by providing in the final chapter a novel proof of Greene et al.’s criterion using the graphical calculus, recently expanded by A. Kotelskiy, Watson and C. Zibrowius.
Item Metadata
Title |
Thinking of (1,1) knots using elastic bands on peg-boards and combed glazing on the mille-feuille
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2020
|
Description |
Despite the analytic underpinnings of Heegaard Floer theory and its refine- ment to knots, there is an interesting class of knots, the (1, 1) knots, which have the special property that their knot Floer homology can be computed na ̈ıvely, straight from the definition, using only combinatorial techniques. In this thesis, we survey (1,1)-knots, describe their knot Floer homology, and focus in particular on the landscape of the manifolds obtained by Dehn surgery on these knots. More precisely, J. Greene, S. Lewallen and F. Vafaee recently described a simple criterion for determining if a (1, 1) knot admits a nontrivial surgery to an L-space, using the orientation of the curves in a doubly pointed genus-1 Heegaard diagram for the knot. This character- ization is formally very similar to a characterization due to J. Hanselman, J. Rasmussen and L. Watson, using a graphical calculus they developed for working with the bordered Floer theory. We relate these two perspectives, by providing in the final chapter a novel proof of Greene et al.’s criterion using the graphical calculus, recently expanded by A. Kotelskiy, Watson and C. Zibrowius.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-08-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0392980
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2020-11
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International