UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Addressing security in drone systems through authorization and fake object detection Karimibiuki, Mehdi


There now exists more than eight billion IoT devices with expected growth to reach over 22 billion by 2025. IoT devices are comprised of sensor and actuator components which generate live-stream data and share information via a common communication link, e.g., the Internet. For example, in a smart home, a number of IoT devices such as a Google Home/Amazon Alexa, smart plugs, security cameras, a garage door, and a thermostat connect to the WiFi network to routinely communicate with each other, share information, and take actions accordingly. However, a main security challenge is protecting shared information between authorized devices/users while distinguishing real objects from fake ones in the network. Such a challenge aggravates man-in-the-middle, and denial-of-service vulnerabilities. To defend such concerns, in this thesis, we first propose an authorization framework called Dynamic Policy-based Access Control (DynPolAC) as a model for protecting information in dynamic and resource-constrained IoT systems. We focus our experiments with DynPolAC on an IoT environment comprised of drones. DynPolAC achieves more than 7x speed performance improvements in authorization when compared to previously proposed methods for resource-constrained IoT platforms such as drones. Secondly, in this thesis, we implement a method called Phoenix to detect fake drones in an IoT network from real drones. We experimentally train and derive Phoenix from a control function called the Lyapunov stability function. We evaluate Phoenix for drones using an autopilot simulator as well as flying a real drone. We find that Phoenix takes about 50 ms to distinguish real drones from fake ones, while by asymmetry, it could take days for motivated attackers to reconstruct Phoenix. Phoenix also achieves a precision rate of 99.55% to detect real drones and a recall rate of 99.84% to detect fake drones.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International