UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Computerized cognitive training and physical exercise : effects on cognitive and brain function in older adults ten Brinke, Lisanne Femke


Since the world is aging at an unprecedented rate, it is important to identify and evaluate strategies that promote healthy cognitive aging. In addition to exercise, computerized cognitive training (CCT) is an emerging and promising strategy to promote cognitive function. Therefore, the aim of my dissertation is four-fold: 1) To provide a detailed review of literature examining the underlying neural changes of CCT in older adults; 2) To examine the effects of CCT, alone and when immediately preceded by a 15-minute brisk walk, on cognitive function; 3) To identify the neural correlates of CCT-induced cognitive benefits; and 4) To examine whether CCT impacts these neural correlates. Firstly, a systematic review examining the underlying neural mechanisms of CCT showed that, despite promising benefits on for example functional connectivity, there is a need for more high-quality studies in order to draw sound conclusions. Secondly, I addressed the remaining three aims by developing an 8-week randomized controlled trial of CCT examining the impact of CCT, alone and when immediately preceded by a single bout of aerobic exercise, on cognitive function compared with an active control in community-dwelling older adults. Results demonstrated that those assigned to CCT showed cognitive benefits compared with those assigned to the active control. More widespread cognitive benefits were seen for those assigned to the combined exercise and CCT group. In addition, using resting-state functional magnetic resonance imaging, I examined inter-network functional connectivity over the course of the eight weeks. I was able to identify inter-network functional connectivity correlates of change in cognitive performance observed after the 8-week intervention. Moreover, those assigned to purely CCT improved regional inter-network functional connectivity compared with the active control. My work confirms and extends on previous work, suggesting that CCT benefits cognitive function. A novel finding is the additional cognitive benefit elicited when preceding CCT with a single bout of exercise. Additionally, new insights into the potential neural mechanisms underlying CCT-induced benefits on cognitive function are presented. Overall, results from my dissertation contribute to this emerging field, suggesting CCT as a promising strategy to promote healthy cognitive aging.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International