- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Role of Wnt signaling in asymmetrical neurite pruning...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Role of Wnt signaling in asymmetrical neurite pruning in Caenorhabditis elegans Lu, Menghao
Abstract
Developmental neurite pruning is a phenomenon widely observed in different organisms including humans. Through this process, neurons selectively remove exuberant neurites by pruning to form a proper neurocircuit. Some neurites are pruned base on the competition of neuronal input, while others undergo stereotyped pruning which is controlled by morphogenic cues. We found that in Caenorhabditis elegans, a cholinergic motor neuron, PDB, undergoes stereotyped neurite pruning. During PDB development, we observed two posterior branches that are stereotypically pruned. Time-lapse imaging showed that these posterior branches are retracted while the anterior branch is extending. We also found a posteriorly expressed Wnt, LIN-44, and its receptor LIN-17/Frizzled (Fz) are responsible for the pruning of the posterior neurites. In lin-44 and lin-17 mutant animals, the posterior neurites often failed to be pruned. Furthermore, we discovered that the activation of LIN-44/Wnt is gradient independent, and membrane-tethered lin-44 is sufficient to induce asymmetrical posterior neurite pruning. LIN-17 and its downstream DSH-1/Dishevelled (Dsh/Dvl) proteins are recruited to the posterior neurites while either wildtype or membrane-tethered lin-44 is expressed. Our results showed a novel contact-dependent role of Wnt in asymmetric neurite pruning.
Item Metadata
Title |
Role of Wnt signaling in asymmetrical neurite pruning in Caenorhabditis elegans
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2020
|
Description |
Developmental neurite pruning is a phenomenon widely observed in different organisms including humans. Through this process, neurons selectively remove exuberant neurites by pruning to form a proper neurocircuit. Some neurites are pruned base on the competition of neuronal input, while others undergo stereotyped pruning which is controlled by morphogenic cues.
We found that in Caenorhabditis elegans, a cholinergic motor neuron, PDB, undergoes stereotyped neurite pruning. During PDB development, we observed two posterior branches that are stereotypically pruned. Time-lapse imaging showed that these posterior branches are retracted while the anterior branch is extending. We also found a posteriorly expressed Wnt, LIN-44, and its receptor LIN-17/Frizzled (Fz) are responsible for the pruning of the posterior neurites. In lin-44 and lin-17 mutant animals, the posterior neurites often failed to be pruned. Furthermore, we discovered that the activation of LIN-44/Wnt is gradient independent, and membrane-tethered lin-44 is sufficient to induce asymmetrical posterior neurite pruning. LIN-17 and its downstream DSH-1/Dishevelled (Dsh/Dvl) proteins are recruited to the posterior neurites while either wildtype or membrane-tethered lin-44 is expressed. Our results showed a novel contact-dependent role of Wnt in asymmetric neurite pruning.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-01-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0388224
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2020-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International