UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Personalized dosimetry protocol for the optimization of lutetium-177 DOTATATE radionuclide therapy Zhao, Wei

Abstract

Targeted radionuclide therapy has been shown to be one of the most effective treatment options for metastatic neuroendocrine tumours (NETs). In particular, peptide receptor radionuclide therapy (PRRT) with Lutetium-177 (¹⁷⁷Lu) labeled DOTATATE results in significantly improved tumour control, while only low to moderate normal tissue toxicity. There is growing evidence that the efficacy of this treatment can be further improved by performing personalized administration of radiopharmaceutical. However, since the dosimetry for PRRT is usually considered challenging, traditionally NET patients are treated with same or very similar amounts of ¹⁷⁷Lu DOTATATE. The objective of this thesis was to propose a simple, yet accurate dosimetry protocol, which could be easily implemented in clinics for the optimization of radionuclide therapy. To achieve this aim, the following questions, related to the image-based dose calculation, were investigated: The performance of the camera calibration method, using simple planar scans, was compared to that obtained from tomographic acquisitions. To assess the quantitative accuracy of commercial SPECT reconstruction software (Siemens Flash3D), a number of phantom experiments with different photon attenuation conditions were performed. The influence of camera dead-time correction on the estimated dose was investigated. The kidney doses obtained from four time-activity curve creation methods, obtained using three data points, were compared. In order to simplify the dosimetry, the accuracy of dose estimated based on two data points, or even potentially one data point, was evaluated. Our results show that the gamma camera can be accurately calibrated with planar scan of a point-like source. When Siemens Flash3D reconstruction was used, the errors of ¹⁷⁷Lu activity quantification in objects with large volumes (>100mL) was about 5%. Dead-time correction was found to have no impact on the estimated dose. Kidney doses estimated based on single data point measured at 48-72 hours produced small errors (<10%) for the majority of patients, thus could be recommended for clinical use. This single data point method can also be applied to other organs/therapies, as long as the organs’ bio-kinetics can be described by a monoexponential function and the statistical behavior of the population effective half-lives for these organs have been estimated.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International