UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Impact of microscreen pretreatment and biofilm photobioreactor design on efficiency of decentralized wastewater treatment Roberts, James


Biofilm photobioreactors rely on cooperation between algae and bacteria within a single biofilm to treat wastewater. Algae growth produces oxygen, which can subsequently be utilized by aerobic bacteria to degrade organic matter and produce carbon dioxide, which is then utilized as a carbon source by algae. Due to their relatively low maintenance and energy inputs, biofilm photobioreactors could be amenable for decentralized wastewater treatment. However, the impact of biofilm photobioreactor design on treatment efficiency has received little attention. Here, it was hypothesized that open (i.e. unsealed) versus closed (i.e. sealed) photobioreactors could promote different nitrogen removal pathways by altering redox conditions throughout a diel cycle. This study explored the effect of open versus closed photobioreactor configurations on nitrogen removal and the microbial community structure in two parallel photobioreactors treating microscreened decentralized wastewater. The reactors were intermittently lit in a 16hr-8hr light-dark cycle, and operated at an HRT of 2 days and SRT of 9 days. The influent feed regime and alkalinity addition were varied over three successive 30-day experimental phases. Microscreening was an effective primary treatment step, removing 70 ± 6% (95% c.i.) of suspended solids and 39 ± 9% of COD. The photobioreactors removed 90 ± 6 % and 83 ± 3% of the remaining suspended solids and COD respectively, independent of operating conditions. Alternating oxic and anoxic conditions were observed in both reactors during the lit and unlit periods, respectively, resulting nitrification and denitrification. Optimal nitrogen removal conditions were observed under a sequencing batch feed regime with alkalinity addition. Under these conditions, TKN removal was significantly higher in the open reactor at 93 ± 5% compared to 78 ± 6% in the closed reactor due to higher rates of nitrification and N assimilation. TN removal was similar at 77 ± 9% and 76 ± 8% in the open and closed systems, respectively. The dominant bacterial genus in the reactors was Tychonema, a cyanobacteria which comprised up to 87% of 16S rRNA gene amplicon reads. Overall, this study demonstrated that nitrogen removal pathways differ significantly in open and closed photobioreactors when operated at the same COD loading rate.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International