- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The role of Npas4 and Rgs2 in the regulation of pancreatic...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The role of Npas4 and Rgs2 in the regulation of pancreatic β-cell function Speckmann, Thilo
Abstract
Pancreatic β-cells regulate systemic glycemia by releasing the glucose-lowering hormone insulin. Diabetes, a chronic metabolic disease characterized by insulin insufficiency, is linked to β-cell dysfunction with perturbed calcium homeostasis. The activity-induced, calcium-dependent transcription factor, NPAS4, reduced insulin secretion and promoted β-cell health, in part through its target gene, the GTPase-activating protein RGS2. Because our mechanistic understanding of this process remains incomplete, studying the normal physiology of calcium-dependent β-cell function may uncover new avenues for the treatment or prevention of diabetes. The overall goal of my thesis was to establish whether activity-induced NPAS4 and RGS2 expression could optimize β-cell function. Initially, I uncovered a role for CaMKII, calcineurin, and PKB in membrane depolarization-induced Npas4 mRNA and protein expression in MIN6 cells and mouse islets. Calcineurin inhibition and concurrent loss of NPAS4 showed cytotoxic increases in cleaved caspase 3 expression, which was reversed by adenovirally reinstating NPAS4 in MIN6 cells. Co-immunoprecipitation studies in MIN6 cells then uncovered competition between NPAS4 and a related transcription factor, HIF1α, for the shared heterodimerization partner, ARNT. Accordingly, HIF1α target gene expression was lower in human and mouse islets overexpressing Npas4, and higher in β-cell-specific Npas4 knockout mouse islets (N4KO). Because excessive HIF1α signalling compromises β-cell function by switching energy production from oxidative phosphorylation to anaerobic glycolysis, I examined whether N4KO mice developed functional defects. Indeed, N4KO islets showed lower oxygen consumption rate, and HFD-fed N4KO mice developed mild glucose intolerance. To understand how NPAS4 may counteract these defects, I identified shared DNA binding sites of NPAS4 and ARNT in MIN6 cells using ChIP-Seq. Among the shared sites, I observed NPAS4 and ARNT binding near Rgs2, corroborating an earlier study. I then demonstrated that RGS2 is a negative regulator of glucose-stimulated insulin secretion (GSIS), because Rgs2-overexpressing MIN6 cells and mouse islets showed reduced GSIS, due to lower calcium influx and oxygen consumption, whereas Rgs2 knockout cells exhibited increased GSIS. In sum, I demonstrated that NPAS4 and its target gene, RGS2, are important regulators of β-cell function. This suggests that these two factors could be promising therapeutic targets to promote β-cell health and optimize insulin secretion in diabetes.
Item Metadata
Title |
The role of Npas4 and Rgs2 in the regulation of pancreatic β-cell function
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2019
|
Description |
Pancreatic β-cells regulate systemic glycemia by releasing the glucose-lowering hormone insulin. Diabetes, a chronic metabolic disease characterized by insulin insufficiency, is linked to β-cell dysfunction with perturbed calcium homeostasis. The activity-induced, calcium-dependent transcription factor, NPAS4, reduced insulin secretion and promoted β-cell health, in part through its target gene, the GTPase-activating protein RGS2. Because our mechanistic understanding of this process remains incomplete, studying the normal physiology of calcium-dependent β-cell function may uncover new avenues for the treatment or prevention of diabetes. The overall goal of my thesis was to establish whether activity-induced NPAS4 and RGS2 expression could optimize β-cell function. Initially, I uncovered a role for CaMKII, calcineurin, and PKB in membrane depolarization-induced Npas4 mRNA and protein expression in MIN6 cells and mouse islets. Calcineurin inhibition and concurrent loss of NPAS4 showed cytotoxic increases in cleaved caspase 3 expression, which was reversed by adenovirally reinstating NPAS4 in MIN6 cells. Co-immunoprecipitation studies in MIN6 cells then uncovered competition between NPAS4 and a related transcription factor, HIF1α, for the shared heterodimerization partner, ARNT. Accordingly, HIF1α target gene expression was lower in human and mouse islets overexpressing Npas4, and higher in β-cell-specific Npas4 knockout mouse islets (N4KO). Because excessive HIF1α signalling compromises β-cell function by switching energy production from oxidative phosphorylation to anaerobic glycolysis, I examined whether N4KO mice developed functional defects. Indeed, N4KO islets showed lower oxygen consumption rate, and HFD-fed N4KO mice developed mild glucose intolerance. To understand how NPAS4 may counteract these defects, I identified shared DNA binding sites of NPAS4 and ARNT in MIN6 cells using ChIP-Seq. Among the shared sites, I observed NPAS4 and ARNT binding near Rgs2, corroborating an earlier study. I then demonstrated that RGS2 is a negative regulator of glucose-stimulated insulin secretion (GSIS), because Rgs2-overexpressing MIN6 cells and mouse islets showed reduced GSIS, due to lower calcium influx and oxygen consumption, whereas Rgs2 knockout cells exhibited increased GSIS. In sum, I demonstrated that NPAS4 and its target gene, RGS2, are important regulators of β-cell function. This suggests that these two factors could be promising therapeutic targets to promote β-cell health and optimize insulin secretion in diabetes.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2019-07-24
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-ShareAlike 4.0 International
|
DOI |
10.14288/1.0380061
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2019-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-ShareAlike 4.0 International