UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Dirac materials and the response to elastic lattice deformation Liu, Tianyu

Abstract

Dirac materials have formed a thriving and prosperous direction in modern condensed matter physics. Their bulk bands can linearly attach at discrete points or along curves, leading to arc or drumhead surface states. The candidate Dirac materials are exemplified by Dirac/Weyl semimetals, Dirac/Weyl superconductors, and Dirac/Weyl magnets. Owing to the relativistic band structure, these materials have unique responses to the applied elastic crystalline lattice deformation, which can induce pseudo-magnetic and pseudo-electric fields near the band crossings and produce transport distinguished from that caused by ordinary magnetic and electric fields. In this dissertation, I will demonstrate the exotic transport due to the strain-induced gauge field in Weyl semimetals, Weyl superconductors, and Weyl ferromagnets. I will first elucidate that a simple bend deformation can induce a pseudo-magnetic field that can give rise to the Shubnikov-de Haas oscillation in Weyl semimetals. Then I will elaborate that strain can Landau quantize charge neutral Bogoliubov quasiparticles as well and result in thermal conductivity quantum oscillation in Weyl superconductors. Lastly, I will consider the strain-induced gauge field beyond the fermionic paradigm and explain various quantum anomalies of magnons in Weyl ferromagnets.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International