- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Pursuing structural characterization of membrane proteins...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Pursuing structural characterization of membrane proteins in peptidisc Dhupar, Harveer Singh
Abstract
Classical methods for reconstitution of membrane proteins in detergent-free buffer require extensive optimization and multiple purification steps. The recently developed membrane mimetic system - peptidisc - uses a short amphipathic peptide for fast and effective capture of membrane proteins in a single step. We demonstrate a new method to reconstitute proteins into the peptidisc, the on gradient reconstitution. This method works well for large and/or labile complexes. Using this method, we were able to capture a wide range of proteins from 100 kDa – 628 kDa. We have also been able to capture transient interactions with this method demonstrated by the reconstitution of the holo-translocon (HTL). Recent advances in cryo-EM have opened a whole new realm of membrane protein structural biology with a need for membrane protein preparations that are monodispersed and in a native membrane like state. Given its compositional homogeneity and packing density, the peptidisc may be advantageous for cryo-EM structural studies. Here we present the first sub-nm resolution structure of a membrane protein in peptidisc. With this, we demonstrate that the peptide conforms to the shape of the protein showing the versatility of the peptidisc. The peptidisc is a powerful tool on its own, but when combined with the advances in cryo-EM it can push the boundaries of membrane protein structural biology.
Item Metadata
Title |
Pursuing structural characterization of membrane proteins in peptidisc
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2019
|
Description |
Classical methods for reconstitution of membrane proteins in detergent-free buffer require extensive optimization and multiple purification steps. The recently developed membrane mimetic system - peptidisc - uses a short amphipathic peptide for fast and effective capture of membrane proteins in a single step.
We demonstrate a new method to reconstitute proteins into the peptidisc, the on gradient reconstitution. This method works well for large and/or labile complexes. Using this method, we were able to capture a wide range of proteins from 100 kDa – 628 kDa. We have also been able to capture transient interactions with this method demonstrated by the reconstitution of the holo-translocon (HTL).
Recent advances in cryo-EM have opened a whole new realm of membrane protein structural biology with a need for membrane protein preparations that are monodispersed and in a native membrane like state. Given its compositional homogeneity and packing density, the peptidisc may be advantageous for cryo-EM structural studies. Here we present the first sub-nm resolution structure of a membrane protein in peptidisc. With this, we demonstrate that the peptide conforms to the shape of the protein showing the versatility of the peptidisc. The peptidisc is a powerful tool on its own, but when combined with the advances in cryo-EM it can push the boundaries of membrane protein structural biology.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2020-05-31
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0378541
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2019-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International