UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An experimental test of factors limiting leaf litter mass loss and invertebrate assemblages in riparian zones of forested headwater streams Ramey, Tonya Lee

Abstract

Riparian zones support a broad diversity of organisms and ecosystem functions, like decomposition, which are integral to both terrestrial and aquatic ecosystems. Riparian zones are globally threatened, and management agencies are increasingly focused on protecting the ecological functions and diversity of these systems. Identifying factors limiting decomposition and invertebrate diversity in riparian zones can improve our understanding of how these ecosystems operate. In this thesis, I identified mechanisms contributing to the diversity of terrestrial invertebrates in riparian zones: flooding and drying cycles, nutrient and water availability, microclimate gradients, vegetation and microhabitat diversity, and unique food resources. I experimentally determined whether water, nutrients, and distance from stream limit (1) early-stage mass loss of leaf litter from red alder (Alnus rubra) and western red cedar (Thuja plicata) trees, and (2) terrestrial invertebrate abundance and diversity in headwater riparian zones in southwestern British Columbia. My experiments revealed that moisture is a limiting factor to red alder leaf litter mass loss during the summer dry period: watered litter lost 4% more mass than un-watered litter in four red alder litterbag trials. Nutrient availability may be limiting to western red cedar mass loss at my sites: leaf litter with nutrient additions lost 5% more mass than litter without nutrients in one of three western red cedar trials, suggesting that nutrients may be limiting to western red cedar mass loss at my sites. The terrestrial invertebrate community appeared sensitive to nutrient additions: pitfall trap abundance and order richness were lower at stations with nutrients. Trap abundance, taxonomic richness, and community composition also differed based on month of capture. I also documented differences in microclimate variables with distance from stream. Temperature and moisture conditions within 1 m of the stream differed from conditions farther away during the summer dry period between July and August, but only temperature differed in winter between December and January. This small difference in microclimate with distance from stream did not appear to influence invertebrate abundance and diversity, or mass loss of either litter species. These results contribute to our understanding of which factors limit decomposition and diversity in headwater riparian zones.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International