UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Resistance of reinforced concrete cantilever shear walls to seismic shear demands Young, Mitchell P.

Abstract

Reinforced concrete shear wall core structures are very common among high-rise buildings in Vancouver, and increasingly so elsewhere. While the flexural behaviour of these structures is well understood, the shear behaviour is not. Much of the research regarding the shear behaviour is related to the amplifications of demands due to higher mode seismic shear, however, there has been little research regarding the resistance of these structures to higher mode seismic shear demands. It is theorized that due to the lack of experimental data on which more complex shear models could be based on, structural engineers have resorted to using building models with complex non-linear fibre section flexural stiffness, but a linear elastic shear stiffness. Which may have lead to higher mode shear demands to be overestimated. Therefore, the goal of this thesis is to complete an experimental program in which scaled shear wall core specimens are tested under higher mode demands in the cantilevered direction. Through the experimental program, topics that are investigated include: the effect of the rate of loading on the shear resistance, the effect of existing flexural base yielding on the shear resistance, and the presence of a plastic hinge at the base on the shear resistance. In addition to the experimental program, a series of dynamic analyses were completed on a simplified model, in order to better understand the behaviour of a high-rise reinforced concrete shear wall structure to higher mode effects, and the results of the experimental program are also compared to predictions made using common analytical tools.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International