- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Resistance of reinforced concrete cantilever shear...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Resistance of reinforced concrete cantilever shear walls to seismic shear demands Young, Mitchell P.
Abstract
Reinforced concrete shear wall core structures are very common among high-rise buildings in Vancouver, and increasingly so elsewhere. While the flexural behaviour of these structures is well understood, the shear behaviour is not. Much of the research regarding the shear behaviour is related to the amplifications of demands due to higher mode seismic shear, however, there has been little research regarding the resistance of these structures to higher mode seismic shear demands. It is theorized that due to the lack of experimental data on which more complex shear models could be based on, structural engineers have resorted to using building models with complex non-linear fibre section flexural stiffness, but a linear elastic shear stiffness. Which may have lead to higher mode shear demands to be overestimated. Therefore, the goal of this thesis is to complete an experimental program in which scaled shear wall core specimens are tested under higher mode demands in the cantilevered direction. Through the experimental program, topics that are investigated include: the effect of the rate of loading on the shear resistance, the effect of existing flexural base yielding on the shear resistance, and the presence of a plastic hinge at the base on the shear resistance. In addition to the experimental program, a series of dynamic analyses were completed on a simplified model, in order to better understand the behaviour of a high-rise reinforced concrete shear wall structure to higher mode effects, and the results of the experimental program are also compared to predictions made using common analytical tools.
Item Metadata
Title |
Resistance of reinforced concrete cantilever shear walls to seismic shear demands
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2019
|
Description |
Reinforced concrete shear wall core structures are very common among high-rise buildings in Vancouver, and increasingly so elsewhere. While the flexural behaviour of these structures is well understood, the shear behaviour is not. Much of the research regarding the shear behaviour is related to the amplifications of demands due to higher mode seismic shear, however, there has been little research regarding the resistance of these structures to higher mode seismic shear demands.
It is theorized that due to the lack of experimental data on which more complex shear models could be based on, structural engineers have resorted to using building models with complex non-linear fibre section flexural stiffness, but a linear elastic shear stiffness. Which may have lead to higher mode shear demands to be overestimated.
Therefore, the goal of this thesis is to complete an experimental program in which scaled shear wall core specimens are tested under higher mode demands in the cantilevered direction. Through the experimental program, topics that are investigated include: the effect of the rate of loading on the shear resistance, the effect of existing flexural base yielding on the shear resistance, and the presence of a plastic hinge at the base on the shear resistance.
In addition to the experimental program, a series of dynamic analyses were completed on a simplified model, in order to better understand the behaviour of a high-rise reinforced concrete shear wall structure to higher mode effects, and the results of the experimental program are also compared to predictions made using common analytical tools.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2019-02-28
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0376559
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2019-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International