- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Effects of thinning on stand-structure dynamics and...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Effects of thinning on stand-structure dynamics and growth in pure and mixed Douglas-fir and western hemlock stands in coastal British Columbia Carsky, Grace
Abstract
Thinning treatments are an important management tool, as they help reduce competition and promote tree growth by increasing available resources in a stand (e.g., light, water, etc.). Thinning leads to differences in stand composition and structure, and this variation has been linked to forest productivity. Previous research has found that tree growth can be improved in some mixed species stands, if trees do not directly compete for the same resources. Reduced competition and improved productivity has been found in mixed species stands of Douglas-fir and western hemlock. Many studies on thinning effects have found that thinning improves average tree size and growth, but this does not provide insight into whether small or large trees benefit most from thinning. Using data from 22 pure and mixed Douglas-fir and western hemlock stands that were part of long-term thinning experiments, I analyzed how thinning (0%, 20% and 35% basal area removed) affects stand-structure dynamics and basal area growth in pure and mixed species stands over time. To understand how thinning affects size inequality—expressed by the Gini coefficient—and growth dominance over time, a linear mixed effects models was fit that included thinning and years since thinning as explanatory variables. Results found that size-inequality did not change over time and growth dominance was reduced in mixed species stands, indicating that mixed species stands may be more productive and all trees have improved growth efficiency. An individual tree analysis was performed to understand thinning and competition effects on tree basal area growth. The results indicate that basal area growth was highest in the largest trees. Results also show that inter-specific competition increases basal area growth of western hemlock trees. Both analyses found that mixed species stands resulted in improved basal area growth, likely through reduced competition. Forest managers may look to planting mixed species stands to improve forest productivity.
Item Metadata
Title |
Effects of thinning on stand-structure dynamics and growth in pure and mixed Douglas-fir and western hemlock stands in coastal British Columbia
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2019
|
Description |
Thinning treatments are an important management tool, as they help reduce competition and promote tree growth by increasing available resources in a stand (e.g., light, water, etc.). Thinning leads to differences in stand composition and structure, and this variation has been linked to forest productivity. Previous research has found that tree growth can be improved in some mixed species stands, if trees do not directly compete for the same resources. Reduced competition and improved productivity has been found in mixed species stands of Douglas-fir and western hemlock. Many studies on thinning effects have found that thinning improves average tree size and growth, but this does not provide insight into whether small or large trees benefit most from thinning. Using data from 22 pure and mixed Douglas-fir and western hemlock stands that were part of long-term thinning experiments, I analyzed how thinning (0%, 20% and 35% basal area removed) affects stand-structure dynamics and basal area growth in pure and mixed species stands over time. To understand how thinning affects size inequality—expressed by the Gini coefficient—and growth dominance over time, a linear mixed effects models was fit that included thinning and years since thinning as explanatory variables. Results found that size-inequality did not change over time and growth dominance was reduced in mixed species stands, indicating that mixed species stands may be more productive and all trees have improved growth efficiency. An individual tree analysis was performed to understand thinning and competition effects on tree basal area growth. The results indicate that basal area growth was highest in the largest trees. Results also show that inter-specific competition increases basal area growth of western hemlock trees. Both analyses found that mixed species stands resulted in improved basal area growth, likely through reduced competition. Forest managers may look to planting mixed species stands to improve forest productivity.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2019-01-29
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0376213
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2019-05
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International