UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Structural insights into inhibitory mechanisms of cathepsin K Law, Simon Sau Yin

Abstract

Cathepsin K (CatK) is a lysosomal cysteine protease highly expressed in osteoclasts and is responsible for the degradation of bone. Implication of CatK in various musculoskeletal disorders including osteoporosis highlights CatK as an important target for drug development. This thesis aims to identify and characterize different classes of CatK inhibitors, which target the active site and collagenolytically relevant ectosteric sites using X-ray crystallography combined with mutational and kinetic studies. In chapter 2, odanacatib, a specific CatK inhibitor recently abandoned in clinical trials due to adverse side effects, was investigated for its selectivity for mouse CatK over the human counterpart. Structural, mutagenic, and kinetic studies identified two structural features in the mouse enzyme which determines odanacatib’s selectivity. Replacement of these features from the human counterpart was able to restore inhibitory activity in the mouse enzyme. In chapters 3 and 4, composite docking and high throughput fluorescence polarization (FP) assay methods were developed to identify novel ectosteric inhibitors of CatK by targeting the protein oligomerization site required for collagen degradation. Screening of the NCI Database (280,000 compounds) using three distinct molecular modeling methods identified nine active compounds. The best compound had an IC50 value around 300 nM in cell-based resorption assays. Over 5,000 compounds were also screened using a developed FP assay and nine collagenase inhibitors were identified. Three of these compounds were active in subsequent cell-based assays. In chapter 5, NSC-13345, the structure of a putative allosteric inhibitor of CatK described in literature was determined in complex with the enzyme using X-ray crystallography. Previous characterization was performed using an inactive variant and the allosteric site affected by the presence of an extra loop. Structural determination with the fully processed enzyme identified three binding sites. One site located above the active site may explain its substrate selective inhibition. In addition, the crystal structure of T-06, a potent collagenase inhibitor of CatK, in complex with CatK was determined and provided insight into its ectosteric inhibition. These findings suggest that NSC-13345 and T-06 function as a substrate selective ectosteric inhibitors for CatK.

Item Citations and Data

Rights

Attribution-NoDerivatives 4.0 International