UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Development of an innovative modular steel truss system Zhuo, Sirou

Abstract

This thesis proposes an innovative and economical modular steel truss system (MSTS), using modular steel floor system (MSFS) and modular buckling restrained braced truss moment frame (MBRBTMF). The proposed MSTS can be fabricated offsite and then shipped and assembled on site, saving construction time and fabrication expense. This specially designed floor system, MSFS, consists of space trusses and precast concrete slab toppings, and to fully utilize the spaces within the floors, the mechanical, electrical and plumbing (MEP) systems are pre-installed within. The proposed floor system was optimized for both gravity and lateral loads, using a robust structural optimization method conducted in conjunction with the Matlab and OpenSees. Space trusses are utilized to provide sufficient stiffness to support gravity, eliminate vertical deflection and transfer lateral force without significantly increasing floor depth. The buckling restrained braces (BRBs) in MBRBTMF are employed as energy dissipation components, allowing the structures to be repaired efficiently after earthquakes. The seismic performances of a MSTS structure and conventional structures with MSFS were systematically analyzed with OpenSees. The nonlinear dynamic responses of these structures show that the proposed modular system is highly efficient in resisting gravity and lateral loads, and can be used efficiently for modular constructions worldwide.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics