UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Radio frequency CMOS : from ultra-high speed to ultra-low power Masnadi Shirazi Nejad, Amir Hossein


Over the last three decades, radio-frequency(RF) Complementary Metal-Oxide-Semiconductor(CMOS) electronics has made a huge impact in our world. Wireless Local Area Networks(WLANs), cellular networks, Global Positioning Systems(GPSs), and Bluetooth are a few examples where the impact of RF CMOS has led to rapid adoption and standardization of the technology. However, there still exists several challenging areas at the intersection of RF and CMOS where new paradigms must be established. This thesis summarizes the research to meet those goals as briefly described here: Research during the past decades provided CMOS solutions to RF applications that utilize the frequency spectrum up to 6 GHz. However, efficient system integration of mm-wave and THz in CMOS is still a challenging task. The THz spectrum is gaining interest due to its wider and less populated available spectrum, as well as its intriguing applications in molecular spectroscopy, imaging, and sensing. This band, although very useful, has been difficult to realize in hardware because of the limitations in CMOS electronics. In the first four chapters of this thesis, we investigate the challenge of implementing signal-sources at mm-wave and sub-THz frequencies using low-cost and versatile CMOS circuits, replacing the existing expensive solutions. Demand for embedded low-power electronics for wireless connectivity is growing due to the rapid proliferation of Internet-of-Things (IoT). Although Wireless Sensor Network(WSN) had been around for decades, some applications such as biomedical monitoring systems require ultra-low-power(ULP) and cost-effective wireless solutions. Research on energy-harvesting systems (e.g., RF energy harvesting, thermoelectric, etc.) and integrated-circuits(IC) bears the promise of medium-reach battery-free wireless connectivity solutions. In Chapters 5 and 6 of this thesis, multiple ULP wireless connectivity solutions for both commercial standards such as Bluetooth Low Energy(BLE) and custom-designed application-specific-radios are proposed and implemented in 40nm and 130nm CMOS technologies, respectively. Finally, application of RF electronics in power-electronics is studied in the last chapter. Although power-management integrated circuit is a well-developed field of research, PMICs still have existing bottlenecks (e.g., die area and output ripple) which can be addressed with the knowledge of RF electronics. In this thesis, feasibility of GHz-range converters is studied.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics