The Open Collections website will be undergoing maintenance on Wednesday December 7th from 9pm to 11pm PST. The site may be temporarily unavailable during this time.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Displacement-based design of reinforced concrete moment resisting frame incorporating cross laminated timber infill and metallic damper connectors Madheswaran, Jayanthan

Abstract

This thesis discusses the development of a new innovative reinforced concrete hybrid structure. The hybrid structure consists of reinforced concrete frame incorporated with Cross Laminated Timber (CLT) and metallic damper connections. The seismic design of this proposed system was carried out with the displacement-based design framework and the design was successfully verified. First, this study focused to numerically model the conventional metallic (steel slit) damper and validated with the experimental result using the Abaqus finite element program. Then, to minimize the drawbacks of the conventional damper specimen, a parametric study has been carried out by changing the shape parameters of the damper using the factorial design of experiments. The purpose of conducting a parametric study is to find the appropriate configuration of the damper which can perform well with the proposed hybrid system. Further, the importance of the shape parameter and their interactions in the final response was studied using the response surface method. Secondly, the proposed hybrid system with the metallic damper connection was modeled in Extended Three Dimensional Analysis of Building Systems (ETABS) and then the overall behavior of the system was investigated. In addition, a direct displacement-based design framework was developed for the seismic design of this proposed system. To verify the proposed framework, a 2D six storey hybrid structure was modeled using ETABS. Then, a nonlinear time history analysis was conducted for the modeled structure using 50 set of ground motions to evaluate its performance. The results indicate that the proposed design framework is effective in controlling the displacement of the hybrid system under seismic excitation.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International