UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Experimental and numerical studies on the nonlinear responses of welded wide flange fuses Banjuradja, Winda

Abstract

Metallic yielding damper is an example of commonly used as a sacrificial structural element to dissipate earthquake energy. In this thesis, a novel structural fuse, called Welded Wide Flange Fuse (WWFF), which utilizes commonly available welded wide flange sections to dissipate earthquake energy is proposed. WWFF is versatile, economic, and easy to fabricate. To dissipate earthquake energy, the WWFF is subjected to shear load in the longitudinal direction of the web. The inelastic behavior of the WWFF is expected to be concentrated in the web part of WWFF, where the earthquake energy is dissipated, while the flanges remain elastic. Experiment was conducted to study different parameters such as aspect ratios, slenderness ratios, and size ratios. These parametric studies provide detailed understanding in predicting the important engineering characteristics, such as yielding force, elastic stiffness, energy absorption, over-strength factor, and ductility of the WWFF. Nineteen specimens were tested under two type of loading protocols. Two analytical equations were derived to predict the yielding force and stiffness of the WWFF with different geometry parameters. Finite element models were developed using finite element software ABAQUS/CAE. The developed numerical models were verified using the experimental data. The verified numerical models were used to conduct detailed parametric studies on the WWFF with large array of aspect ratios and slenderness ratios. Beside the FE modelling approach, parametric studies on aspect ratio, slenderness ratio, and size ratio are conducted. Using this model, the effect of these parameters on key engineering characteristics is studied.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International