- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The Rap GTPases coordinate actin and microtubule cytoskeleton...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The Rap GTPases coordinate actin and microtubule cytoskeleton reorganization, and promote antigen extraction at the B cell immune synapse Wang, Jia Chao
Abstract
B cells that bind antigens displayed on antigen-presenting cells (APCs) form an immune synapse (IS), a polarized cellular structure that optimizes the dual functions of the B cell receptor (BCR), signal transduction and antigen internalization. Immune synapse formation involves the polarization of the microtubule-organizing center (MTOC) towards the APC. I showed that BCR-induced MTOC polarization requires the Rap1 GTPases (which has two isoforms, Rap1a and Rap1b), an evolutionarily conserved regulator of cell polarity, as well as cofilin-1, an actin-severing protein that is regulated by Rap1. MTOC reorientation towards the antigen contact site correlated strongly with cofilin-1-dependent actin reorganization and cell spreading. I also showed that BCR-induced MTOC polarization requires the dynein motor protein as well as IQGAP1, a scaffolding protein that can link the actin and microtubule cytoskeletons. At the periphery of the immune synapse, IQGAP1 associates closely with F-actin structures and with the microtubule plus-end-binding protein CLIP-170. Moreover, the accumulation of IQGAP1 at the antigen contact site depends on F-actin reorganization that is controlled by Rap1 and cofilin-1. I also demonstrate that the hematopoietic-cell specific cortactin-homologue, HS1, is essential for regulating actin cytoskeletal remodeling during immune synapse formation and acts downstream of Rap to promote BCR-induced antigen gathering. Additionally, inhibiting the Rap1-cofilin-1 pathway, CLIP-170 expression, or cytoskeletal dynamics impairs the ability of B cells to acquire antigens from APCs. Thus, Rap1 coordinates actin and microtubule organization at the IS, facilitating antigen acquisition from APCs.
Item Metadata
Title |
The Rap GTPases coordinate actin and microtubule cytoskeleton reorganization, and promote antigen extraction at the B cell immune synapse
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2017
|
Description |
B cells that bind antigens displayed on antigen-presenting cells (APCs) form an immune synapse (IS), a polarized cellular structure that optimizes the dual functions of the B cell receptor (BCR), signal transduction and antigen internalization. Immune synapse formation involves the polarization of the microtubule-organizing center (MTOC) towards the APC. I showed that BCR-induced MTOC polarization requires the Rap1 GTPases (which has two isoforms, Rap1a and Rap1b), an evolutionarily conserved regulator of cell polarity, as well as cofilin-1, an actin-severing protein that is regulated by Rap1. MTOC reorientation towards the antigen contact site correlated strongly with cofilin-1-dependent actin reorganization and cell spreading. I also showed that BCR-induced MTOC polarization requires the dynein motor protein as well as IQGAP1, a scaffolding protein that can link the actin and microtubule cytoskeletons. At the periphery of the immune synapse, IQGAP1 associates closely with F-actin structures and with the microtubule plus-end-binding protein CLIP-170. Moreover, the accumulation of IQGAP1 at the antigen contact site depends on F-actin reorganization that is controlled by Rap1 and cofilin-1. I also demonstrate that the hematopoietic-cell specific cortactin-homologue, HS1, is essential for regulating actin cytoskeletal remodeling during immune synapse formation and acts downstream of Rap to promote BCR-induced antigen gathering. Additionally, inhibiting the Rap1-cofilin-1 pathway, CLIP-170 expression, or cytoskeletal dynamics impairs the ability of B cells to acquire antigens from APCs. Thus, Rap1 coordinates actin and microtubule organization at the IS, facilitating antigen acquisition from APCs.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2019-07-31
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0363009
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2018-02
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International