The Open Collections website will be undergoing maintenance on Wednesday December 7th from 9pm to 11pm PST. The site may be temporarily unavailable during this time.

UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

New approaches for understanding urban greenspace using ecosystem services concepts and high spatial resolution mapping Williams, David

Abstract

Urban areas are where most people in the world directly benefit from ecosystem services (ES), yet there is evidence that ES are distributed inequitably with respect to socio-economic status which can lead to environmental injustices. There are a number of barriers to understanding UGS equity, some conceptual and some technical. One barrier is that few studies of environmental justice use similar quantitative methods, nor do they use concordant conceptual frameworks of UGS and ES equity. Another barrier is the fine scale information needed to accurately map greenspace can be difficult and expensive to obtain. In light of these barriers, this thesis seeks to contribute to UGS/ES equity studies in two fundamentally important ways. First, I explore the concepts of equity in ecosystem services as applied to urban settings. I undertake a review of trans-disciplinary literature on urban systems to answer the question “How has environmental justice been considered and incorporated into urban ES research?” I characterize types of urban ES and measure the breadth of justice issues addressed in each article using a new environmental justice index (EJI). I also highlight the methods and results of key quantitative and qualitative papers that can inform future urban ES justice frameworks. Second, I explore how new advances in remote sensing can better characterize UGS distributions via more accurate mapping of heterogeneous urban areas. I combine three-dimensional information from airborne Light Detection and Ranging (LiDAR) data with RapidEye high spatial resolution imagery in a Geographic Object-Based Image Analysis (GEOBIA) approach to classify urban landcover in a large metropolitan region. Though 5m RapidEye pixels were often mixed in urban areas, LiDAR data enabled accurate classification of fine spatial objects such as street trees and single-family dwellings. Ultimately, I propose that mapping ES distributions among urban socio-demographic groups and assessing potential ES tradeoffs is not enough to avoid injustices. Because ES are socio-political constructs, gaining a comprehensive understanding of urban ES injustices is not merely a process of mapping greenspace, but also understanding how the groups in question ascribe value to the ES supply sources around them.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International