UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Synthesis and rheological characterization of polyhydroxybutyrate with different topologies and microstructures Ebrahimi, Tannaz


Series of monodispersed linear and star-shaped polyhydroxybutyrate (PHB)s were synthesized using controlled indium and zinc based complexes through immortal ring opening polymerization of β-butyrolactone (BBL) in the presence of benzyl alcohol, tris(hydroxymethyl)benzene, and dipentaerythritol chain transfer agents. The topologies of the prepared PHBs of various molecular weights were investigated using solution and melt rheological characterizations. The powerlaw relationship between the radius of gyration and hydrodynamic radii of the linear and star PHBs with the molecular weight confirmed that the molecules are self-similar. Reduced values of compactness factor relative to that of linear counterparts and exponential scalling of the zero-shear viscosity of the stars with span molecular weight confirmed the presence of branching on the PHB backbone. A series of racemic and enantiopure zinc complexes were synthesized and fully characterized for the polymerization of BBL to form high molecular weight syndiotactic PHBs (Pr up to 75%). Complex (±)-[(NNHOtBu)ZnOBn]₂ (9) showed unprecedented reactivity and control towards the polymerization of up to 20000 equivalents of BBL in the presence of 5000 equivalents of benzyl alcohol. Isothermal time sweep tests at temperatures above the melting point of the syndio-rich PHBs showed thermally stable behavior of these polymers at temperatures below 140 oC. The zero-shear viscosity of the syndio-riched PHBs was higher than their atactic counterparts and showed a power-law relationship with the molecular weight confirming the linear microstructure and the absence of cyclic or branched species in the melt. The extensional rheometry revealed high melt strength in a range of strain rates as a result of flow induced crystallization. Easy to make, indium-salan complexes were reported for the polymerization of as-received lactide. The solution state characterization of these polymers showed narrow molecular weight distributions with molecular weights closely matching the theoretical molecular weight as an indication of a robust catalytic system. These complexes are capable of polymerizing impure lactide isomers in the melt state under ambient atmospheric conditions to form high molecular weight symmetric star shaped multi-block PLAs with high melting points, up to 197 °C. This catalytic system can also be used for the formation of star-shaped PHB-PLA copolymers in inert atmosphere.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International