UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Ecological effects of disrupting plant-animal interactions Granados, Alys


Human disturbances threaten tropical forests, potentially disrupting plant-animal interactions. Though many studies have assessed the effects of habitat disturbance on either plants or animals, we have a limited understanding of how disrupted interactions will affect both groups of interacting species and whether impacts vary with spatial scale. This hinders our ability to predict how logging, a widespread threat to tropical forests, affects plant and animal communities, particularly in combination with overhunting, a common co-occurring threat. I excluded small to large-bodied mammals from research plots in logged and unlogged forests in Borneo to quantify the effects of logging and hunting on seed predation and establishment in five dominant tree species (Chapter 2). Granivore-induced seed mortality was higher in logged forest. Defaunation did not affect seed mortality. Seedling establishment was highest when small to large-bodied mammals were excluded in logged forest, suggesting that the effects of logging and hunting interact to alter seedling recruitment. I used the same animal exclusion plots to assess impacts on diversity and the distribution of morphological traits in tagged seedling communities over four years (Chapter 3). Excluding small to large vertebrates did not affect overall seedling diversity but animals disproportionately killed seedlings from large-fruited genera in logged forest, reducing community fruit size. Animals altered plant traits, though impacts may be underestimated by focusing only on changes to taxonomic diversity. Selective logging can also intensify the patchiness of food availability across the landscape. Spatiotemporal variability in food abundance is especially pronounced during mast fruiting events, yet the consequences for animal habitat use at different spatial scales in faunally intact systems is unclear. I used camera traps to estimate the site use of several vertebrate species across two dipterocarp mast years and a non-mast year at large and small spatial scales (Chapter 4). Site use was positively associated with masting for several taxa, though strong response were mostly limited to intact forest. Even key consumers (bearded pigs) showed reduced responses in the logged forest at the small scale. Overall, my work demonstrates that anthropogenic disturbances disrupt plant-animal interactions by altering plant recruitment and limiting vertebrate responses to resource availability.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International