UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Prevention of type 1 diabetes by carbamazepine in non-obese diabetic mice Lee, Jason Tsz Chun


Pancreatic β cells are selectively destroyed by the host immune system in type 1 diabetes, which results in the inability to regulate glucose homeostasis due to loss of insulin production capacity. Drugs that preserve β cell mass and function therefore have the potential to prevent or slow the progression of this disease. It was recently reported by our group that the use-dependent sodium channel blocker, carbamazepine, protects pancreatic β cells from inflammatory cytokines in vitro. Subsequent experiments found carbamazepine increased insulin gene expression, which corroborated with an increase in insulin content in islets from mice lacking the Nav1.7 voltage gated sodium channel, which was shown to be a target of carbamazepine in β cells. While these in vitro results were promising, it was unclear whether carbamazepine would protect β cells in vivo against a complete immune system. Therefore, we tested the effects of oral treatment in female non-obese diabetic (NOD) mice, achieving serum carbamazepine levels of 14.98 ± 3.19 μM. Remarkably, diabetes incidence over 25 weeks was ~50% lower in carbamazepine treated animals. Partial protection from diabetes in carbamazepine-fed NOD mice was also associated with improved glucose tolerance at 6 weeks of age, prior to the onset of diabetes in our colony. Insulitis was improved in carbamazepine treated NOD mice at 6 weeks of age, but we did not observe differences in CD4⁺ and CD8⁺ T cell composition in the pancreatic lymph node, as well as circulating markers of inflammation. Taken together, our results demonstrate that carbamazepine reduces the development of type 1 diabetes in NOD mice.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International