- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- The synthesis and photophysical properties of new phosphorus-containing...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
The synthesis and photophysical properties of new phosphorus-containing macromolecules Rawe, Benjamin Walter
Abstract
The thesis outlines the synthesis and photophysical properties of novel macromolecules that contain phosphorus atoms. Significantly, the fluorescence properties of the polymers prepared in this thesis are dependent on the chemical environment at phosphorus. These materials have the potential to be useful sensors for analytes that react with the phosphine moieties in these polymers. Chapter 1 introduces conjugated polymers and details known examples of phosphorus-containing polymers of this class that have been previously reported. A particular focus is the synthesis of these materials, as well as their photophysical properties. The known examples of molecular phosphine sensors are also presented. Chapters 2 and 3 focus on the anionic polymerization of phosphaalkene monomers to make novel poly(methylenephosphine)s, (PMPs) that contain fluorescent polyaromatic substituents. The synthesized polymers exhibited “turn on” fluorescence upon oxidation of the phosphorus centres. Notably, the C-pyrenyl PMP synthesized in Chapter 3 was also fluorescent in the solid state when the phosphine centres were oxidized. Chapter 4 describes the synthesis and photophysical properties of poly(p-phenylenediethynylene phosphine)s, PPYPs, a new class of phosphorus-containing macromolecule. The polymers were prepared using a nickel-catalyzed coupling between phenyldichlorophosphine and dialkynes. The resulting materials displayed photophysical characteristics consistent with a degree of conjugation through the phosphorus centres within the polymer. Upon oxidation of the phosphorus atoms in PPYPs, “turn on” emission was observed. Remarkably oxidized PPYPs were also fluorescent in the solid state and therefore may have application as solid-state sensors or as OLEDs. Chapter 5 describes the study of a fluorene-containing PPYP as a fluorescent sensor for metal analytes. Remarkably the polymer exhibited a substantial fluorescence increase upon coordination to gold and mercury ions whereas exposure of the polymer to other ions resulted in no fluorescence increase. Chapter 6 provides a summary of the work contained within this thesis, and future directions for these projects are postulated.
Item Metadata
Title |
The synthesis and photophysical properties of new phosphorus-containing macromolecules
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2017
|
Description |
The thesis outlines the synthesis and photophysical properties of novel macromolecules that contain phosphorus atoms. Significantly, the fluorescence properties of the polymers prepared in this thesis are dependent on the chemical environment at phosphorus. These materials have the potential to be useful sensors for analytes that react with the phosphine moieties in these polymers.
Chapter 1 introduces conjugated polymers and details known examples of phosphorus-containing polymers of this class that have been previously reported. A particular focus is the synthesis of these materials, as well as their photophysical properties. The known examples of molecular phosphine sensors are also presented.
Chapters 2 and 3 focus on the anionic polymerization of phosphaalkene monomers to make novel poly(methylenephosphine)s, (PMPs) that contain fluorescent polyaromatic substituents. The synthesized polymers exhibited “turn on” fluorescence upon oxidation of the phosphorus centres. Notably, the C-pyrenyl PMP synthesized in Chapter 3 was also fluorescent in the solid state when the phosphine centres were oxidized.
Chapter 4 describes the synthesis and photophysical properties of poly(p-phenylenediethynylene phosphine)s, PPYPs, a new class of phosphorus-containing macromolecule. The polymers were prepared using a nickel-catalyzed coupling between phenyldichlorophosphine and dialkynes. The resulting materials displayed photophysical characteristics consistent with a degree of conjugation through the phosphorus centres within the polymer. Upon oxidation of the phosphorus atoms in PPYPs, “turn on” emission was observed. Remarkably oxidized PPYPs were also fluorescent in the solid state and therefore may have application as solid-state sensors or as OLEDs.
Chapter 5 describes the study of a fluorene-containing PPYP as a fluorescent sensor for metal analytes. Remarkably the polymer exhibited a substantial fluorescence increase upon coordination to gold and mercury ions whereas exposure of the polymer to other ions resulted in no fluorescence increase.
Chapter 6 provides a summary of the work contained within this thesis, and future directions for these projects are postulated.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2019-02-28
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0354470
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2017-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International