- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Computational power of one-dimensional symmetry-protected...
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Computational power of one-dimensional symmetry-protected topological phases Stephen, David Thomas
Abstract
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). Using tensor network methods, we show that SPT phases protected by a finite abelian on-site symmetry group exhibit uniform computational power. That is, any state from a given phase leads to the same Lie group of executable gates when used as a resource for MBQC. This Lie group is determined by the same algebraic information that labels the SPT phase itself, and we give a necessary condition on the phase that guarantees a full set of single-qubit gates. To obtain our results, we construct several new techniques in MBQC and refine the structure of quantum states with abelian SPT order. Our results are analogous to similar results relating topological order and topological quantum computation, and we comments on their implications on the general connection between quantum phases of matter and quantum computation.
Item Metadata
Title |
Computational power of one-dimensional symmetry-protected topological phases
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2017
|
Description |
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). Using tensor network methods, we show that SPT phases protected by a finite abelian on-site symmetry group exhibit uniform computational power. That is, any state from a given phase leads to the same Lie group of executable gates when used as a resource for MBQC. This Lie group is determined by the same algebraic information that labels the SPT phase itself, and we give a necessary condition on the phase that guarantees a full set of single-qubit gates. To obtain our results, we construct several new techniques in MBQC and refine the structure of quantum states with abelian SPT order. Our results are analogous to similar results relating topological order and topological quantum computation, and we comments on their implications on the general connection between quantum phases of matter and quantum computation.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2017-08-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0354465
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2017-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International