- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- A simplicial approach to spaces of homomorphisms
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
A simplicial approach to spaces of homomorphisms Villarreal Herrera, Bernardo
Abstract
Let G be a real linear algebraic group and L a finitely generated cosimplicial group. We prove that the space of homomorphisms Hom(Ln;G) has a homotopy stable decomposition for each n ≥ 1. When G is a compact Lie group, we show that the decomposition is G-equivariant with respect to the induced action of conjugation by elements of G. In particular, under these hypotheses on G, we obtain stable decompositions for Hom(Fqn;G) and Rep(Fqn;G) respectively, where Fqn are the finitely generated free nilpotent groups of nilpotency class q-1. The spaces Hom(Ln;G) assemble into a simplicial space Hom(L;G). When G=U we show that its geometric realization B(L;U) has a non-unital E-infinity-ring space structure whenever Hom(L0;U(m)) is path connected for all m ≥ 0. We describe the connected components of Hom(Fqn;SU(2)) arising from non-commuting q-nilpotent n-tuples. We prove this by showing that all these n-tuples are conjugated to n-tuples consisting of elements in the the generalized quaternion groups Q2q in SU(2), of order 2^q. Using this result, we exhibit the homotopy type of SHom(Fqn;SU(2)) and a homotopy description of the classifying spaces B(q;SU(2)) of transitionally q-nilpotent principal SU(2)-bundles. The above computations are also done for SO(3) and U(2). Finally, for q = 2, the space B(2;G) is denoted BcomG, and we compute the integral cohomology ring for the Lie groups G = SU(2) andU(2). We also include cohomology calculations for the spaces BcomQ2q .
Item Metadata
Title |
A simplicial approach to spaces of homomorphisms
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2017
|
Description |
Let G be a real linear algebraic group and L a finitely generated cosimplicial group. We prove that the space of homomorphisms Hom(Ln;G) has a homotopy stable decomposition for each n ≥ 1. When G is a compact Lie group, we show that the decomposition is G-equivariant with respect to the induced action of conjugation by elements of G. In particular, under these hypotheses on G, we obtain stable decompositions for Hom(Fqn;G) and Rep(Fqn;G) respectively, where Fqn are the finitely generated free nilpotent groups of nilpotency class q-1. The spaces Hom(Ln;G) assemble into a simplicial space Hom(L;G). When G=U we show that its geometric realization B(L;U) has a non-unital E-infinity-ring space structure whenever Hom(L0;U(m)) is path connected for all m ≥ 0.
We describe the connected components of Hom(Fqn;SU(2)) arising from
non-commuting q-nilpotent n-tuples. We prove this by showing that all these n-tuples are conjugated to n-tuples consisting of elements in the the generalized
quaternion groups Q2q in SU(2), of order 2^q. Using this result, we exhibit the
homotopy type of SHom(Fqn;SU(2)) and a homotopy description of the classifying spaces B(q;SU(2)) of transitionally q-nilpotent principal SU(2)-bundles. The above computations are also done for SO(3) and U(2).
Finally, for q = 2, the space B(2;G) is denoted BcomG, and we compute the
integral cohomology ring for the Lie groups G = SU(2) andU(2). We also include
cohomology calculations for the spaces BcomQ2q .
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2017-08-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0354457
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2017-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International