UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Reliability of upper pharyngeal airway assessment using dental CBCT Zimmerman, Jason Noah


Introduction: Upper airway analysis is an often-cited use of CBCT imaging in orthodontics, however the reliability of airway measurements using this technology is not fully understood. The purpose of this study was to determine the intra-examiner and inter-examiner reliability of the complete process of volumetric and cross-sectional area assessments of the upper airway using CBCT imaging. Methods: Five examiners of varying levels of education and clinical experience performed manual orientation, slice and threshold selection, and measured nasopharyngeal, oropharyngeal, hypopharyngeal, and total upper pharyngeal airway volumes in addition to minimum cross-sectional area on the CBCT images of 10 patients. All measurements were repeated after 4-weeks. Intra and inter-examiner reliability was calculated using ICC and 95% CI. Results: Threshold selection showed poor intra and inter-examiner reliability, while minimum cross-sectional area showed moderate intra and poor inter-examiner reliability. Intra-examiner reliability of volumetric measurements varied based on the anatomical region assessed with ICC ranging from 0.747-0.976, and was worst for hypopharynx and best for the oropharynx. Inter-examiner reliability of volume measurements was generally lower, with ICC ranging from 0.175-0.945, and was worst for nasopharynx and best for the oropharynx. Conclusions: This study, for the first time, assessed the reliability of upper airway analysis with CBCT when all steps of image processing and measurement are performed by each examiner. Reliability improved with examiner experience, though was generally low for the hypopharynx and nasopharynx volumes and overall minimal cross sectional area. The oropharyngeal volume was the only parameter to have excellent intra-examiner and inter-examiner reliability.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International