- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- UBC Theses and Dissertations /
- Ultracold molecular plasma
Open Collections
UBC Theses and Dissertations
UBC Theses and Dissertations
Ultracold molecular plasma Schulz-Weiling, Markus
Abstract
The conditions aforded by a skimmed free-jet expansion intersected by two laser pulses, driving resonant transitions in nitric oxide, determine the phase-space volume of a dense molecular Rydberg ensemble. Spontaneous avalanche to plasma within this system leads to the development of two macroscopic domains. These domains are clearly distinguished by their polarizability as well as their locality within the plasma. The first domain appears at the system core, is polarized by fields exceeding 500 mV/cm and displays an ambipolar expansion character suggestive of initial electron temperatures exceeding 150 Kelvin. The second domain travels with the velocity of the supersonic beam and is robust to the application of several hundred V/cm pulses. It is further distinguished through the apparent arrest of relaxation channels, annealing the domain over a millisecond or more in a state far from thermal equilibrium. Both domains are linked via the spontaneous breaking of ellipsoidal symmetry to form bifurcating arrested volumes.
Item Metadata
Title |
Ultracold molecular plasma
|
Creator | |
Publisher |
University of British Columbia
|
Date Issued |
2017
|
Description |
The conditions aforded by a skimmed free-jet expansion intersected by two laser pulses, driving resonant transitions in nitric oxide, determine the phase-space volume of a dense molecular Rydberg ensemble. Spontaneous avalanche to plasma within this system leads to the development of two macroscopic domains. These domains are clearly distinguished by their polarizability as well as their locality within the plasma. The first domain appears at the system core, is polarized by fields exceeding 500 mV/cm and displays an ambipolar expansion character suggestive of initial electron temperatures exceeding 150 Kelvin. The second domain travels with the velocity of the supersonic beam and is robust to the application of several hundred V/cm pulses. It is further distinguished through the apparent arrest of relaxation channels, annealing the domain over a millisecond or more in a state far from thermal equilibrium. Both domains are linked via the spontaneous breaking of ellipsoidal symmetry to form bifurcating arrested volumes.
|
Genre | |
Type | |
Language |
eng
|
Date Available |
2017-08-08
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0351988
|
URI | |
Degree | |
Program | |
Affiliation | |
Degree Grantor |
University of British Columbia
|
Graduation Date |
2017-09
|
Campus | |
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International