UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

NLRP3 inflammasome activity in RPE : role in AMD pathogenesis Gao, Jiangyuan

Abstract

Purpose: Age-related macular degeneration (AMD) is a devastating eye disease causing irreversible vision loss in the elderly. Retinal pigment epithelium (RPE), an important cell type afflicted in AMD, undergoes cell death in the late stages of the disease. Salient factors underlying AMD pathogenesis are aging, drusen components and NLRP3 inflammasome activity. The purpose of this dissertation is to elucidate the molecular interactions among these factors and how they contribute to RPE damage. Methods: The effects of aging on drusen components, in particular the membrane attack complex (MAC) and amyloid beta (Aβ) were examined in rats at different age. To determine the role of MAC in inflammasome activation in RPE, aurin tricarboxylic acid complex (ATAC), was administrated to naïve rats. To understand Aβ’s role in inflammasome activation, Aβ intravitreal injections were made into rat eyes in vivo and Vinpocetine was used to ameliorate the inflammatory responses. An in vitro RPE cell culture model was established to further investigate the relationship between inflammasome and X-chromosome linked inhibitor of apoptosis (XIAP). Statistical significance was set at p ≤ 0.05. Results: An age-dependent increase in MAC, Aβ, and NF-κB activation was observed in the RPE-choroid in vivo. Blocking MAC formation with ATAC led to a prominent reduction in inflammasome activity (caspase-1 cleavage and cytokine secretion), but not in NF-κB activity. Aβ intravitreal injections triggered inflammasome activation evidenced by enhanced caspase-1 cleavage and IL-1β/IL-18 release, which was suppressed by Vinpocetine mediated NF-κB inhibition. The robust inflammasome activity further led to gasdermin D-mediated activation of the pyroptotic pathway and a significant reduction in XIAP, which in turn enhanced IL-18 secretion. Conclusion: Aging is a strong risk factor for AMD, which increases the deposition of MAC and Aβ in the outer retina. The elevated levels of MAC and Aβ are triggers for inflammasome activation. By demonstrating a causal relationship between inflammasome activation and XIAP reduction, this dissertation suggests the precise regulation of XIAP, together with the suppression of MAC and NF-κB, may be crucial for controlling inflammasome activity and hence provides new avenues to prevent AMD.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International