UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Modeling of thermal stress cycling in refractory materials Pandhari, Abhijit

Abstract

In metallurgical reactors, the thermal stress field of refractories always changes with the heat transfer conditions at the hot-face. It is suggested that ‘thermally induced refractory cracking’ is often the primary cause of in-service refractory failure but quantitative support for this is lacking. The current work is focussed on studying this aspect by developing an experimentally validated thermomechanical model that considers refractory strength degradation under repeated thermal cycling. A thermo-mechanical model has been developed with ABAQUS to predict thermal stress and damage in a refractory specimen subjected to thermal cycling. An experiment based on the “contact-conduction method” that uses a hot/cold metal block to heat/cool a refractory specimen was carried out to validate the model. The experiments were run for up to 3-cycles starting from cold- and hot-refractory specimens. Thermocouples were used to gather temperature data from refractory and steel block. An inverse heat conduction model was developed to predict the heat flux applied to the refractory specimen by the steel block based on the temperature history from the steel block. Ultrasonic testing was carried out on the refractory specimens before and after the thermal cycling tests. The contact-conduction method was successful in creating significant thermal gradients in the refractory specimens. Thermocouples on refractory located at 1cm from the steel-refractory show temperature variation of about 500°C and 575°C for cold- and hot-refractory specimen, respectively after 3-cycles. The model was capable of predicting the temperature changes and damage in the refractory material after multiple cycles. Ultrasonic velocity tests show significant change in the sound velocities in the areas experiencing thermal cycling, indicating significant micro-cracking damage in those areas. It was seen that with multiple cycles the damage penetrated further into the specimen, however the magnitude of the damage does not increase significantly. Application to an example tundish operation indicated that the model was capable of analyzing an ideal preheating schedule and was capable of predicting the effect of idle time and multiple thermal cycles on the damage in refractories. However, to predict thermal spalling more precisely, an integrated model that considers the effect of thermal gradients, chemical reactions and mechanical loads is needed.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International