UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Hydrogen peroxide electrosynthesis in solid polymer electrolyte (spe) reactors with and without power co-generation Li, Winton

Abstract

For applications that require small amounts of H₂O₂ or have economically difficult transportation means, an alternate, on-site H₂O₂ production method to the current industrial anthraquinone auto-oxidation process is needed. Thus far neutral production of H₂O₂ has been limited to bench-top laboratory scaled research with low yield of H₂O₂ [1]. To produce neutral H₂O₂ on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a solid polymer electrolyte (SPE) cell could be a possible solution. The work presented here has utilized a SPE cell operating in either fuel cell mode (power generating) or electrolysis mode (power consuming) to produce H₂O₂. The SPE cell reactor is operated with a continuous flow of cathode carrier water flowing through the cathode to remove the product H₂O₂. Two catalysts were chosen for further study in this work, one is the inorganic cobalt-carbon composite catalyst, to be used in both fuel cell mode and electrolysis mode operation. The other is the riboflavin-anthraquinone-carbon composite catalyst, to be used in only the electrolysis mode operation. Through parametric experiments in both modes of operation, the Co-C catalyst was able to achieve peroxide production rate of ~200 μmol hr-¹ cm-² and 4 mW cm-² operating at a cell temperature of 60°C with a current density of 30 mA cm-² and 30% current efficiency in fuel cell mode operation. Long term recycle experiments over a period of 72 hours showed an accumulated H2O2 concentration of over 1400 ppm. Investigation of both catalysts in electrolysis mode operation showed that the AQ-C catalyst achieved maximum H₂O₂ production of 580 μmol hr-¹ cm-² operating at 40°C and a current density of 240 mA cm-² with an 8% current efficiency; while the Co-C catalyst had a maximum H₂O₂ production rate of 360 μmol hr-¹ cm-² operated at 240 mA cm-² with 8% current efficiency. Long term recycle study of both catalysts in electrolysis mode generated maximum H₂O₂ concentrations of over 3000 ppm in 72 hours. Water sample analysis showed no degradation of the catalysts in either mode of operation.

Item Media

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics