UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Integrating field and remote sensing approaches to evaluate ecosystem services from agriculture in smallholder landscapes Kearney, Sean Patrick


Agriculture now covers over a third of the Earth’s terrestrial surface, and smallholder farmers alone manage over a billion hectares globally. As stewards of the land, smallholders do much more for human well-being than just harvest useful products. However, a conventionally narrow focus on productivity over the last half- century now threatens ecosystem health and long-term agricultural production, particularly as global climate change accelerates. Agroecological and ‘climate-smart’ agricultural (CSA) practices have been proposed to both mitigate climate change and build resilience by enhancing multiple ecosystem services (ES), and policies are emerging to incentivize the adoption of such practices. In order to (1) better understand how agroecological and CSA management alternatives impact multiple ES, and (2) contribute to operationalizing monitoring of ES in smallholder landscapes, I present research from El Salvador combining field methods and remote sensing analysis to evaluate multiple ES. Using data from on-farm field trials, I developed composite ES indices to demonstrate distinct benefits and synergies among multiple ES from agroforestry and, to a lesser extent, organic management (i.e., CSA) compared to conventional management. I also identified a subset of easy-to-measure field proxies that correlate well with multiple ES, and proposed an improved method to compare relative erosion resulting from different land management practices. At the landscape scale, I focused on emerging techniques to map aboveground woody biomass (AGWB) – a large terrestrial carbon sink and indicator of agroforestry management – using high-spatial-resolution satellite imagery and airborne laser scanning (ALS). I showed how satellite data could be used to quantify AGWB at the watershed to landscape scale with uncertainties of less than 5%, and suggest that a singular focus on plot-scale uncertainty limits the operationalization of satellite-based approaches to monitor AGWB. I also present a novel approach to using ALS that improves the accuracy of measuring AGWB in trees outside of forests (e.g., agroforestry, hedgerows) and apply it to show that these trees contain substantial AGWB within smallholder landscapes, further demonstrating the ES benefits of agroforestry. This dissertation contributes to designing simple and cost-effective monitoring strategies to help operationalize policies promoting management practices that enhance multiple ES in smallholder agriculture.

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International