UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Parallel algorithms and software tools for high-throughput sequencing data Mohamadi, Hamid

Abstract

With growing throughput and dropping cost of High-Throughput Sequencing (HTS) technologies, there is a continued need to develop faster and more cost-effective bioinformatics solutions. However, the algorithms and computational power required to efficiently analyze HTS data have lagged considerably. In health and life sciences research organizations, de novo assembly and sequence alignment have become two key steps in everyday research and analysis. The de novo assembly process is a fundamental step in analyzing previously uncharacterized organisms and is one of the most computationally demanding problems in bioinformatics. The sequence alignment is a fundamental operation in a broad spectrum of genomics projects. In genome resequencing projects, they are often used prior to variant calling. In transcriptome resequencing, they provide information on gene expression. They are even used in de novo sequencing projects to help contiguate assembled sequences. As such designing efficient, scalable, and accurate solutions for de novo assembly and sequence alignment problems would have a wide effect in the field. In this thesis, I present a collection of novel algorithms and software tools for the analysis of high-throughput sequencing data using efficient data structures. I also utilize the latest advances in parallel and distributed computing to design and develop scalable and cost-effective algorithms on High-Performance Computing (HPC) infrastructures especially for the de novo assembly and sequence alignment problems. The algorithms and software solutions I develop are publicly available for free for academic use, to facilitate research at health and life sciences laboratories and other organizations worldwide.

Item Citations and Data

License

Attribution-NonCommercial-NoDerivatives 4.0 International

Usage Statistics